

WINCHESTER PIKE AT EBRIGHT ROAD AND SHANNON ROAD FRANKLIN COUNTY, OHIO

GEOTECHNICAL EXPLORATION REPORT (REV. 1)

Prepared For: ms consultants, Inc. 2221 Schrock Road Columbus, Ohio 43229

Prepared By: Resource International, Inc. 6350 Presidential Gateway Columbus, OH 43231

Rii Project No. W-13-054

December 2013

Planning, Engineering, Construction Management, Technology 6350 Presidential Gateway, Columbus, Ohio 43231 P 614.823.4949 F 614.823.4990

RESOURCE INTERNATIONAL, INC.

6350 Presidential Gateway Columbus, Ohio 43231 P 614.823.4949 F 614.823.4990 www.ResourceInternational.com ISO ISO 9001:2008 Certified QMS

December 18, 2013

Ms. Valerie Croasmun, P.E., AICP ms consultants, inc. 2221 Schrock Road Columbus, Ohio 43229

Re: Geotechnical Exploration Report (Rev. 1) Winchester Pike at Ebright Road and Shannon Road Franklin County, Ohio Rii Project No. W-13-054

Ms. Croasmun:

Resource International, Inc. (Rii) is pleased to submit this revised geotechnical exploration report for the above-referenced project. Engineering logs have been prepared and are attached to this report along with the results of the laboratory testing. This report includes recommendations for the design and construction of the proposed improvements to the intersection of Winchester Pike with Shannon Road and Ebright Road, in Franklin County, Ohio. This document supersedes our previous submittal.

We appreciate having been given the opportunity to be of service to you on this project. If you have any questions concerning the geotechnical exploration or this report, do not hesitate to contact us.

Sincerely,

RESOURCE INTERNATIONAL, INC.

James R. Howdyshell, E.I. Project Engineer

Jonathan P. Sterenberg, P.E. Director of Geotechnical Services

Enclosure: Geotechnical Exploration Report

Sect	ion	P	age
EXE	CUTIN	VE SUMMARY	I
	Anal	lysis and Recommendations	ii
1.0	INTR	RODUCTION	1
2.0	0 50	DLOGY AND OBSERVATIONS OF THE PROJECT	4
2.0			
	2.1	Site Geology	
	2.2	Existing Site Conditions	2
3.0	EXP	LORATION	2
4.0	FIND	DINGS	5
	4.1	Surface Material	5
	4.2	Subsurface Soils	
	4.3	Bedrock	
	4.4	Groundwater	
5.0	ANA	LYSES AND RECOMMENDATIONS	10
	5.1	Pavement Subgrade Recommendations	10
	••••	5.1.1 Station by Station Stabilization Recommendations	10
		5.1.2 Global Stabilization	
		5.1.3 Subgrade Design Considerations	
	5.2	Pavement Thickness Evaluation	
		5.2.1 Flexible Pavement	
		5.2.2 Rigid Pavement	
	5.3	Foundation Recommendations	
	5.4	5.3.1 Driven Pile Considerations	-
	ว.4 5.5	Scour Data	-
	5.6	Construction Considerations	
	0.0	5.6.1 Excavation Considerations	-
		5.6.2 Groundwater Considerations	
6.0	LIMI	TATIONS OF STUDY	22

TABLE OF CONTENTS

APPENDICES

Appendix IState GeologyAppendix IIVicinity Map and Boring PlanAppendix IIIDescription of Soil TermsAppendix IVBoring Logs: B-001-0-13 through B-016-0-13Appendix VPavement Core Data SummaryAppendix VIGB1 Subgrade Stabilization SummaryAppendix VIIDRIVEN Analysis Output

EXECUTIVE SUMMARY

Resource International, Inc. (Rii) has completed a subgrade exploration report for the design and construction of the proposed roadway and intersection improvements at the intersection of Winchester Pike with Shannon Road and Ebright Road in Franklin County, Ohio. It is understood that the project will widen, for additional turn lanes, Winchester Pike along the north side of the roadway from approximately 1,200 feet west to 950 feet west of its intersection with Shannon Road and Ebright Road. Ebright Road will also be widened along the east side of the roadway to approximately 950 feet south of its intersection with Winchester Pike, and Shannon Road will be widened along the east side of the roadway to approximately 900 feet north of said intersection. In addition to the pavement widening, the existing bridge structure carrying Winchester Pike over Blacklick Creek will also be widened to the north. It is understood that the proposed structure modifications are considered to be rehabilitation, therefore, the design is to be performed in accordance with AASHTO Standard Specifications (LFD) and the 2004 ODOT Bridge Design Manual (BDM).

Exploration and Findings

During the period of July 8 through July 15, 2013, a total of sixteen (16) test borings, designated as borings B-001-0-13 through B-016-0-13, were drilled at the locations illustrated on the boring plan presented in Appendix II. In addition to the borings, five (5) pavement cores were also obtained from borings B-006, B-011, B-012, B-015 and B-016.

At the existing ground surface, nine (9) of the borings performed as part of this investigation were located outside of the existing pavement limits and encountered 3.0 to 10.0 inches of topsoil. The remaining seven (7) borings were located within the existing pavement and encountered 8.0 to 9.0 inches of asphalt at the existing ground surface, with the exception of boring B-008 which encountered 11.0 inches of concrete. Underlying the surficial asphalt, the borings performed within the existing pavement consistently encountered 4.0 inches of concrete, with the exception of boring B-014, which encountered 3.0 inches of aggregate base beneath the asphalt. Aggregate base was also encountered underlying the surficial concrete in boring B-008 with a thickness of 5.0 inches.

Underlying the surficial materials, existing fill was encountered in eight (8) of the sixteen (16) borings performed as part of this investigation. The existing fill material extended to depths ranging from 1.5 to 18.0 feet below existing grades, and consisted of both granular and cohesive soils. The granular fill soils encountered at the site were classified as gravel, gravel with sand and silt, gravel with sand, silt and clay, and sandy silt (ODOT A-1-a, A-2-4, A-2-6, A-4a). The cohesive fill soils were classified as sandy silt, silt and clay, and silty clay (ODOT A-4a, A-6a, A-6b). It should be noted that several of the recovered fill samples contained construction debris such as wood fibers and fragments in addition to asphalt, brick, concrete and slag fragments.

i.

Underlying the surficial and existing fill materials, the borings encountered natural, primarily cohesive soils, underlain by deep deposits of granular soils in the structure borings. The natural cohesive soils encountered at the site consisted of sandy silt, silt, silt and clay, silty clay and clay (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6). The granular soils were described as gravel, gravel with sand, gravel with sand and silt, gravel with sand, silt and clay and sandy silt (ODOT A-1-a, A-1-b, A-2-4, A-2-6, A-4a).

Bedrock was not encountered in any of the borings performed as part of this investigation.

Analysis and Recommendations

The subgrade soils for the proposed roadway and intersection improvements at the intersection of Winchester Pike with Hannon and Ebright Roads consist predominantly of cohesive materials comprised of sandy silt, silt, silt and clay, silty clay and clay (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6). Some granular materials, comprised of gravel, gravel with sand, gravel with sand and silt, and gravel with sand, silt and clay (ODOT A-1-a, A-1-b, A-2-4, A-2-6) were also encountered within the uppermost 6.0 feet of the anticipated subgrade.

Based on the GB1, the overall average site parameters are noted as follows:

Average	Average	Average	Average Optimum	Average	Design
N _{60L}	Pl	Moisture	Moisture	Group Index	CBR
8	13	17	13	5.6	8

Overall Average Site Parameters

California Bearing Ratio (CBR) values for the entire project ranged from 4 to 12 with an average of 8. It is recommended that pavement design be based on the average CBR of 8 with a corresponding Subgrade Resilient Modulus, M_R, of 9,600 psi. Correlation charts indicate a Modulus of Subgrade Reaction (K) of 175 pci and a Soil Support Value (SSV) of 5.3.

It is understood that the existing structure carrying Winchester Pike over Blacklick Creek is currently a 3-span structure supported on 12-inch diameter cast-in-place (CIP) pipe piles (ODOT Item 507.07). Based on the information provided by ms, it is understood that driven CIP pipe piles will be utilized for support of the widened northern section of the existing structure. Rii understands that 12-inch diameter CIP piles will be utilized at the abutments, and 14-inch diameter CIP piles will be utilized at the intermediate piers. Anticipated scour depths are expected to range from 10 feet at the piers to 15 feet at the abutments. Based on the maximum pile loads provided, it is recommended that the proposed CIP piles be embedded as noted in the following table. It should be noted that

the abutment and intermediate pier footings were considered to be at a depth of 10.0 feet below the existing ground surface.

Boring	Ground		Pile Elevation		Embedment	Scour Depth ⁴	Pile
Number	Elevation ¹	Pile Size	Top ²	Тір	Depth ³ (feet)	(feet)	Capacity ⁴ (kips/pile)
B-004 (Rear Abutment)	754.5	12" CIP	744.5	697.5	47	15	79
B-005 (Pier 1)	746.1	14" CIP	736.1	694.1	42	10	120
B-008 (Pier 2)	744.0	14" CIP	734.0	691.0	43	10	120
B-009 (Forward Abutment)	754.7	12" CIP	744.7	687.7	57	15	79

CIP Pile Recommendations

1. Ground elevation listed is the ground elevation at the boring location. The ground elevation at the pier locations is not the same as the elevations listed.

2. The top of pile elevation is at the proposed bottom of footing elevation at the abutment locations and at the bottom of the proposed pile cap at the pier locations.

3. Embedment depths represent the length of pile in contact with the soil.

4. Scour depth and maximum pile capacities were provided by ms consultants.

NOTE: The top of pile elevation coincides with the bottom of footing elevations, and the estimated pile lengths reflect exclusively the length of the pile in contact with the soil. **Embedment length of the pile into the footing is not included.** Estimated pile lengths are rounded up to the nearest foot.

Please note that this executive summary does not contain all the information presented in the report. The unabridged subsurface exploration report should be read in its entirety to obtain a more complete understanding of the information presented.

1.0 INTRODUCTION

This report is a presentation of the geotechnical exploration performed for the design and construction of the proposed improvements to the intersection of Winchester Pike with Shannon Road and Ebright Road in Franklin County, Ohio. Resource International, Inc. (Rii) understands that the project will widen, for additional turn lanes, Winchester Pike along the north side of the roadway from approximately 1,200 feet west to 950 feet east of the intersection with Shannon Road and Ebright Road. Ebright Road will also be widened along the east side of the roadway to approximately 950 feet south of the intersection with Winchester Pike, and Shannon Road will be widened along the east side of the roadway to approximately 900 feet north of the intersection. Based on information provided by ms consultants (ms), it is anticipated that the proposed grade in the widened lanes will closely match the existing grade in the existing lanes. In addition to the pavement widening, the existing bridge structure carrying Winchester Pike over Blacklick Creek will also be widened to the north. The project area is shown on the vicinity map as part of the boring plan presented in Appendix II of this report.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

2.1 Site Geology

Both the Illinoian and Wisconsinan glaciers advanced over two-thirds of the State of Ohio, leaving behind glacial features such as moraines, kame deposits, lacustrine deposits and outwash terraces. The glacial and non-glacial regions comprise five physiographic sections grouped by age, depositional process and geomorphic occurrence. Physiographically, the site lies within the Columbus Lowland of the Southern Ohio Loamy Till Plain. This region is characterized by relatively flat-lying silty loam till ground moraine, interspersed with end and recessional moraines, outwash and alluvial deposits. Ground moraines are deposited during the retreat of a glacier which results in an undifferentiated mixture of clay, silt, sand and gravel. End moraines are normally associated with ice melting that is neither advancing nor retreating for a period of time. Recessional moraines are deposited during the retreat of a glacial ice sheet. Both end and recessional moraines are commonly associated with boulder belts. Outwash deposits consist of undifferentiated sand and gravel deposited by meltwater in front of glacial ice and often occurs as valley terraces or low plains. Alluvium and alluvial terrace deposits range from silty clay to cobble sized particles, usually deposited in present and former floodplain areas, such as the Big Walnut Creek and Blacklick Creek river valleys.

Based on the Bedrock Geology and Topography Maps obtained from the Ohio Department of Natural Resources (ODNR), bedrock underlying the glacial deposits consists of the Devonian-aged Ohio Shale Formation. The Ohio Shale Formation consists of carbonaceous shale with carbonate/siderite concretions and ranges in color from brownish black to greenish gray. This formation contains laminated to thinly bedded shale and ranges from approximately 250 to 500 feet thick. According to be

bedrock topography mapping, the bedrock surface forms a large, broad crest centered beneath the intersection of State Route 33 and South Hamilton Road. The edge of this crest slopes gradually downward beneath the site toward the northeast. The bedrock surface, at the intersection of Ebright Road and Winchester Pike, lies at an approximate elevation of 550 feet mean sea level (msl). Therefore, the depth to bedrock in the vicinity of the intersection is approximately 200 feet below the ground surface. Illustrations of the general geology of Ohio are included in Appendix I.

2.2 Existing Site Conditions

The intersection of Winchester Pike, Ebright Road and Shannon Road is located 0.9 miles north of U.S. Route 33, in Madison Township, Franklin County, Ohio. At the intersection, Winchester Road is aligned northwest and southeast, Ebright Road is aligned south, and Shannon Road heads northeast then to the east and intersects Gender Road. The existing roads all maintain two lanes of traffic, with Shannon Road having a right side turn lane at the intersection. The intersection services primarily agricultural properties and recreational facilities. Blacklick Trail runs along the northwest side of the intersection, crossing under Winchester Pike and running along Blacklick Creek. The intersection also contains many buried and overhead utilities that run adjacent to the roadways as well as through the intersection. The roadways are surfaced with asphalt and are generally in fair to good condition. The overall slope across the project area is to the north-northwest toward Blacklick Creek, which drains into Big Walnut Creek.

3.0 EXPLORATION

During the period of July 8 through July 15, 2013, a total of sixteen (16) test borings, designated as borings B-001-0-13 through B-016-0-13, were drilled at the locations illustrated on the boring plan presented in Appendix II, and summarized in Table 1. Six (6) of the borings were performed within the proposed widening area of Winchester Pike, six (6) borings were performed within the proposed widening areas of Ebright and Shannon Roads and four (4) borings were performed for the widening of the existing bridge structure carrying Winchester Pike over Blacklick Creek. Each of the twelve (12) pavement borings were sampled continuously beginning at either the existing ground surface, or at the bottom of the existing pavement section, to the boring termination depth. The structure borings were extended to depths ranging from 49.0 to 70.0 feet below the existing ground surface.

The boring locations were determined and located in the field by Rii representatives. Geographic latitude and longitude coordinates were collected using a handheld GPS device, and ground surface elevations at the boring locations were interpolated using topographic mapping information provided by ms.

Defense	Deriver			Location		Ground	Boring
Reference Alignment	Boring Number	Station Offset Latitude Longitude				Elevation (feet)	Depth (feet)
	B-001-0-13	98+28.61	7.2' Lt.	39.892395028° N	82.867088240° W	750.9	7.0
	B-002-0-13	103+20.06	8.2' Lt.	39.891649918° N	82.865628480° W	752.2	7.0
Winchester Pike	B-003-0-13	106+67.99	7.7' Lt.	39.891119702° N	82.864596961° W	755.8	7.0
	B-004-0-13	109+04.13	27.7' Lt.	39.890804549° N	82.863857051° W	754.5	70.0
	B-005-0-13	109+41.28	29.7' Lt.	39.890751273° N	82.863743295° W	746.1	65.0
Ebright	B-006-0-13	30+97.39	19.7' Rt.	39.887172020° N	82.863722579° W	749.7	6.0
Road	B-007-0-13	35+98.66	23.7' Rt.	39.888544310° N	82.863605264° W	747.8	6.0
Winchester	B-008-0-13	110+47.84	26.6' Lt.	39.890575557° N	82.863437654° W	744.0	49.0
Pike	B-009-0-13	110+88.05	31.2' Lt.	39.890521281° N	82.863311137° W	754.7	65.0
Ebright Road	B-010-0-13	41+11.77	19.4' Rt.	39.889851368° N	82.863104708° W	752.0	6.0
Winchester Pike	B-011-0-13	113+59.57	7.2' Lt.	39.890020140° N	82.862586414° W	754.8	7.0
Shannon	B-012-0-13	44+14.57	23.7' Rt.	39.890536819° N	82.862497086° W	752.7	6.0
Road	B-013-0-13	48+89.55	17.2' Rt.	39.891528700° N	82.861431508° W	746.0	6.0
Winchester Pike	B-014-0-13	117+55.23	6.5' Lt.	39.889326156° N	82.861500331° W	752.1	7.0
Shannon Road	B-015-0-13	52+83.79	21.8' Rt.	39.889326156° N	82.860255120° W	748.1	6.0
Winchester Pike	B-016-0-13	121+73.38	7.0' Lt.	39.888567975° N	82.860381430° W	750.5	7.0

Table 1. Test Boring Summary

In addition to the borings performed, five (5) pavement cores were also obtained from borings B-011 and B-016 along Winchester Pike, borings B-012 and B-015 along Shannon Road and from boring B-006 along Ebright Road to determine the existing pavement thickness, composition and condition where the proposed improvements will tie into the existing alignments. Photographs of the retained pavement cores are presented in Appendix IV immediately following the boring logs. The cores were retained with a portable, 4.0-inch diameter thin-walled, pavement coring machine.

The borings were drilled with an all-terrain-vehicle (ATV) mounted rotary drilling machine, utilizing a 4.5-inch outside diameter, solid flight auger to advance the pavement borings, and a 4.25-inch inside diameter hollow-stem auger to advance the structure borings. Standard penetration test (SPT) and split spoon sampling was performed continuously in the pavement borings to a depth of 6.0 feet below either the existing ground surface or the existing pavement section. In the structure borings

performed for the proposed bridge widening, SPT and split spoon sampling were performed at 2.5-foot intervals to a depth of 20 feet below the proposed bottom of footing, and at 5.0-foot intervals thereafter until the boring termination depth. Continuous sampling was also performed for a 6.0-foot interval below the existing creek bed of Blacklick Creek in pier boring B-005. Due to the time constraints associated with closing the Blacklick Trail, continuous sampling was not performed below the creek bed in pier boring B-008.

The SPT, per the American Society for Testing and Materials (ASTM) designation D1586, is conducted using a 140-pound hammer falling 30.0 inches to drive a 2.0-inch outside diameter split spoon sampler 18.0 inches. Rii utilized an automatic drop hammer to generate consistent energy transfer to the sampler. Driving resistance is recorded on the boring logs in terms of blows per 6.0-inch interval of the driving distance. The second and third intervals are added to obtain the number of blows per foot (N). Standard penetration blow counts aid in determining soil properties applicable in pavement and foundation system design. The measured blow count (N) values were corrected to an equivalent (60%) energy ratio, N_{60} , by the following equation, and both values are represented on the boring logs in Appendix IV.

$$N_{60} = N_m^*(ER/60)$$

Where:

 N_m = measured N value

ER = drill rod energy ratio, expressed as a percent, for the system used

The hammer for the ATV-mounted drill rig used for this project was calibrated on April 26, 2013 and has a drill rod energy ratio of 77.7 percent.

Upon completion of drilling, the borings were backfilled with either soil cuttings generated during the drilling process, or a mixture of soil cuttings and bentonite chips. Where borings were located within the existing pavement, an equivalent thickness of cold patch asphalt was used to repair the pavement surface.

During drilling, field personnel prepared field logs showing the encountered subsurface conditions. Soil samples obtained from the drilling operation were preserved and sealed in glass jars and delivered to the soil laboratory. In the laboratory, the soil samples were visually classified and select samples were tested, as noted in Table 2.

Laboratory Test	Test Designation	Number of Tests Performed
Natural Moisture Content	ASTM D2216	113
Plastic and Liquid Limits	AASHTO T89, T90	32
Hydrometers	AASHTO T88	33
Sulfate Content in Soils – Colorimetric Method	TEX-145-E	13
Loss By Ignition	ASTM D2974	1

These tests are necessary to classify the soil according to the Ohio Department of Transportation (ODOT) Classification System. The results are also used to infer engineering properties of importance in pavement and foundation design and soil related construction considerations. Results of the laboratory testing are presented on the boring logs in Appendix IV. A description of the soil terms used throughout this report is presented in Appendix III.

Hand penetrometer readings, which provide a rough estimate of the unconfined compressive strength of the soil, were reported on the boring logs in units of tons per square foot (tsf) and were utilized to classify the consistency of the cohesive soil in each layer. An indirect estimate of the unconfined compressive strength of the cohesive split spoon samples can also be made from a correlation with the blow counts (N_{60}). Please note that split-spoon samples are considered to be disturbed and the laboratory determination of their shear strengths may vary from undisturbed conditions.

4.0 FINDINGS

Interpreted engineering logs have been prepared from field logs, visual examination of samples, and laboratory testing. Classification follows the current version of the ODOT Specifications for Geotechnical Explorations (SGE). The following is a summary of what was found in the test borings and what is represented on the boring logs.

4.1 Surface Material

At the existing ground surface, nine (9) of the sixteen (16) borings performed as part of this investigation were located outside of the existing pavement limits and encountered 3.0 to 10.0 inches of topsoil, as identified by the significant presence of vegetation and organic materials. The remaining seven (7) borings were located within the existing pavement and encountered 8.0 to 9.0 inches of asphalt at the existing ground surface, with the exception of boring B-008 which encountered 11.0 inches of concrete within the limits of Winchester Pike. Underlying the surficial asphalt, the borings performed within the existing pavement consistently encountered 4.0 inches of concrete, with the

5

exception of boring B-014 performed along Winchester Pike, which encountered 3.0 inches of aggregate base beneath the asphalt. Aggregate base was also encountered underlying the surficial concrete in boring B-008 with a thickness of 5.0 inches. In addition to the borings, it should also be noted that pavement cores were obtained at the locations of borings B-006, B-012, and B-015. While these borings were performed outside of the existing pavement, the corresponding adjacent pavement cores encountered 8.0 to 8.25 inches of asphalt at the ground surface. A detailed summary of the existing surface materials encountered at each boring location is provided in Table 3.

Reference Alignment	Boring Number	Asphalt	Concrete	Aggregate Base	Topsoil
	B-001-0-13	8.0	4.0	-	-
	B-002-0-13	8.0	4.0	-	-
Winchester Pike	B-003-0-13	8.0	4.0	-	-
	B-004-0-13	-	-	-	8.0
	B-005-0-13	-	-	-	10.0
	B-006-0-13	-	-	-	4.0
Ebright Road	B-006 Core	8.0	-	-	-
	B-007-0-13	-	-	-	4.0
Winchester	B-008-0-13	-	11.0	5.0	-
Pike	B-009-0-13	-	-	-	3.0
Ebright Road	B-010-0-13	-	-	-	4.0
Winchester Pike	B-011-0-13	8.25	4.0	-	-
	B-012-0-13	-	-	-	5.0
Shannon Road	B-012 Core	8.0	-	-	-
	B-013-0-13	-	-	-	5.0
Winchester Pike	B-014-0-13	9.0	-	3.0	-
Shannon Road	B-015-0-13	-	-	-	8.0
Ghannon Koau	B-015 Core	8.25	-	-	-
Winchester Pike	B-016-0-13	8.25	4.0	-	-

Table 3. Surface Material Thicknesses

4.2 Subsurface Soils

Underlying the surficial materials summarized in Table 3, material identified as existing fill was encountered in eight (8) of the sixteen (16) borings performed as part of this investigation. The existing fill material extended to depths ranging from 1.5 to 18.0 feet below existing grades, and several of the recovered samples were noted as containing construction debris such as wood fibers and fragments in addition to asphalt, brick, concrete and slag fragments.

Only one (1) of the three (3) borings performed along Ebright Road, boring B-006, encountered existing fill material. The existing fill material encountered in boring B-006 extended to a depth of 1.5 feet beneath the existing ground surface and consisted of stiff brown silt and clay (ODOT A-6a). Existing fill material was also encountered in the two (2) northernmost borings performed along Shannon Road, borings B-013 and B-015. Boring B-013 encountered existing fill material extending to a depth of 4.5 feet that consisted of medium dense, brownish gray gravel with sand, silt and clay (ODOT A-2-6) and gravel with sand and silt (ODOT A-2-4), which contained asphalt and slag fragments. The fill material encountered in boring B-015 extended to a depth of 1.5 feet and consisted of hard, light brown silt and clay (ODOT A-6a) containing Styrofoam fragments.

Along Winchester Pike, existing fill materials were encountered in each of the structure borings, but only one (1) of the pavement borings, B-011. The existing fill material encountered in boring B-011, performed near the existing intersection, extended the entire depth of the boring, a total of 7.0 feet below the ground surface, and consisted of medium dense, brown gravel (ODOT A-1-a) overlying very stiff, gray sandy silt and dense to very dense brownish gray gravel with sand, silt and clay (ODOT A-4a, A-2-6). It should be noted that asphalt and brick fragments were encountered throughout the fill material in boring B-011, and that sampler refusal was encountered at a depth of 5.9 feet.

Borings B-004 and B-005 were performed on the western side of Blacklick Creek for the proposed structure widening and encountered existing fill materials that extended to depths of 18.0 and 7.5 feet, respectively. The fill materials encountered in B-004 consisted of loose brown sandy silt (A-4a), stiff to very stiff brown and gray silt and clay and silty clay (ODOT A-6a, A-6b), and very loose gray gravel with sand and gravel with sand silt (ODOT A-1-a, A-2-4). The fill materials encountered in Boring B-005 consisted of brown and black sandy silt that ranged in consistency from soft to stiff. Wood fibers were noted throughout the fill material encountered on this side of the structure.

Borings B-008 and B-009 were performed on the eastern side of Blacklick Creek, and encountered existing fill materials to depths of 9.0 and 8.0 feet, respectively. The fill materials encountered in these borings was identified as medium dense to very dense gray gravel (ODOT A-1-a), and medium stiff to stiff gray, dark gray and black sandy silt

(ODOT A-4a). Wood fragments were noted throughout the fill material in both borings, and concrete fragments were noted in boring B-009.

Underlying the surficial and existing fill materials, the borings encountered natural, primarily cohesive, soils which were underlain by deep deposits of granular soils in the structure borings.

To the east of the intersection along Winchester Pike, pavement borings B-001 through B-003 encountered a consistent layer of medium dense granular soils extending to a depth of 2.5 feet. These granular soils consisted of brown and brownish gray gravel with sand and sandy silt (ODOT A-1-b, A-4a). Underlying the granular seam, borings B-001 and B-002 encountered brown, brownish gray, and black silt and clay (ODOT A-6a) with a medium stiff to very stiff consistency, while boring B-003 encountered medium dense to dense dark brown and dark gray gravel with sand, silt, and clay (ODOT A-2-6). On the western side of the intersection, borings B-014 and B-016 encountered a thin layer of medium dense brown, black and gray gravel (ODOT A-1-a) overlying medium stiff to very stiff brown and gray sandy silt and silty clay (ODOT A-4a, A-6b).

Borings B-006, B-007 and B-10 were performed along Ebright Road and encountered natural cohesive soils extending to the boring termination depths. These cohesive soils consisted of brown and brownish gray silt and clay, silty clay and clay (ODOT A-6a, A-6b, A-7-6) which ranged in consistency from stiff to very stiff. Along Shannon Road, boring B-012 encountered a thin seam of loose, brownish gray sandy silt (ODOT A-4a) overlying very stiff to hard brownish gray silt (ODOT A-4b), while borings B-013 and B-015 encountered very stiff to hard brown and gray sandy silt and silt and clay (ODOT A-4a, A-6a) underlying the existing fill materials.

In the structure borings, borings B-004, B-005 and B-008 encountered a similar stratigraphy, with a layer of medium dense to dense granular soils consisting of gravel. gravel with sand, and gravel with sand and silt (ODOT A-1-a, A-1-b, and A-2-4) overlying a continuous layer of sandy silt (ODOT A-4a) that ranged in consistency from medium stiff to hard. Underlying the cohesive layer, which ranged in thickness from 20.0 to 25.5 feet, the borings each encountered, and were terminated within, a layer of dense to very dense gravel and gravel with sand (ODOT A-1-a, A-1-b). Boring B-009, however, encountered primarily granular soils. Beneath a 6.0-foot thick layer of soft to medium stiff clay (ODOT A-7-6) that was encountered immediately underlying the fill materials, boring B-009 encountered and was terminated within granular soils consisting of loose to dense gravel with sand, gravel with sand and silt, gravel with sand, silt and clay, and sandy silt (ODOT A-1-b, A-2-4, A-2-6, A-4a), with the only exception being a 5.0-foot thick layer of hard silt and clay (ODOT A-6a) encountered at a depth of 27.0 feet.

The shear strength and consistency of the cohesive soils are primarily derived from the hand penetrometer values (HP). The cohesive soils encountered ranged from soft (0.25 < HP \leq 0.5 tsf) to hard (HP > 4.0 tsf). The unconfined compressive strength of the

cohesive soil samples tested, obtained from the hand penetrometer, ranged from 0.25 tsf to over 4.5 tsf (limit of instrument). The relative density of granular soils is primarily derived from SPT blow counts (N_{60}). Based on the SPT blow counts obtained, the granular soils encountered ranged from very loose ($N_{60} < 5$ blows per foot [bpf]) to very dense ($N_{60} > 50$ bpf). Overall blow counts recorded from the SPT sampling ranged from 3 bpf to 80, generally increasing with depth.

Natural moisture contents of the soil samples tested ranged from 3 to 129 percent. The natural moisture contents of the soil samples tested for plasticity index ranged from 9 percent below to 39 percent above their corresponding plastic limits. In general, the soils exhibited natural moisture contents estimated to be significantly below to significantly above their corresponding optimum moisture levels.

4.3 Bedrock

Bedrock was not encountered in any of the borings performed as part of this investigation.

4.4 Groundwater

In the pavement borings performed as part of this investigation, groundwater seepage was encountered in boring B-013 at a depth of 4.0 feet, and more significant groundwater flow was encountered in boring B-006 at a depth of 5.2 feet. Both of these borings were noted as being dry at completion, meaning that no measurable amount of groundwater had accumulated in the borehole prior to backfilling. Groundwater was not encountered during drilling or at completion in any of the remaining ten (10) pavement borings.

Groundwater was encountered in each of the structure borings performed as part of this investigation, however. Groundwater seepage was encountered in each of the structure borings during drilling at depths ranging from 3.5 feet to 16.0 feet, with more significant groundwater flows encountered at depths ranging from 8.0 feet to 18.0 feet below the ground surface. Accurate groundwater level readings were not able to be obtained in the structure borings at the completion of drilling due to the introduction of drilling mud through the augers during drilling. The drilling mud was introduced to the boreholes in an effort to combat heaving sands.

Please note that short-term water level readings, especially in cohesive soils, are not necessarily an accurate indication of the actual groundwater conditions. In addition, groundwater levels or the presence of groundwater are considered to be dependent on seasonal fluctuations in precipitation.

A more comprehensive description of the groundwater conditions encountered in each of the borings during the drilling program can be found on the boring logs in Appendix IV.

5.0 ANALYSES AND RECOMMENDATIONS

Data obtained from the drilling and testing program have been used to determine pavement and foundation support capabilities for the soil encountered at the site. These parameters have been used to provide guidelines for the design of the pavement and structure foundation systems, as well as the construction specifications related to the placement of the pavement and structure foundation systems and general earthwork recommendations, all of which are discussed in the following paragraphs.

5.1 Pavement Subgrade Recommendations

The subgrade soils for the proposed roadway and intersection improvements at the intersection of Winchester Pike with Shannon and Ebright Roads consist predominantly of cohesive materials comprised of sandy silt, silt, silt and clay, silty clay and clay (ODOT A-4a, A-4b, A-6a, A-6b, A-7-6). Some granular materials, comprised of gravel, gravel with sand, gravel with sand and silt, and gravel with sand, silt and clay (ODOT A-1-a, A-1-b, A-2-4, A-2-6) were also encountered within the uppermost 6.0 feet of the anticipated subgrade. Based on the soil conditions encountered during the drilling program, it is estimated that the subgrade soils within the upper portions of the proposed subgrade will require some level of stabilization under ODOT Geotechnical Bulletin GB1: Plan Subgrades. It is anticipated that proposed subgrade elevations will closely match the existing subgrade, with little change in the vertical alignment, requiring little to no site work to bring the site to the proposed final grading.

The moisture content of cohesive soil has a significant effect on the physical properties of the material. It must be noted that the moisture contents illustrated on the boring logs, and utilized in this analysis, represent the conditions during the drilling phase of the project. The referenced borings utilized in the subgrade analysis were performed on July 9th, 10th, and 15th, 2013. These soil conditions, especially in the uppermost soils, may not coincide with the soil conditions that will be encountered during construction. Consequently, the extent/need for subgrade improvement is entirely dependent on the subgrade conditions (i.e., moisture contents) encountered at the time of construction.

5.1.1 Station by Station Stabilization Recommendations

It is understood that specific, "station by station" recommendations for subgrade stabilization under GB1 are required for anticipated excavation and replacement quantities. Therefore, a summary of recommended excavation and replacement quantities, as well as chemical stabilization quantities, referencing the boring locations, are presented in Table 4. A complete analysis of each soil boring, presenting the

proposed subgrade soils at each location, is presented in the GB1 spreadsheet included as Appendix VI. Please note that the stabilization depths presented in Table 4 were measured from the proposed roadway subgrade (bottom of proposed pavement section). If the final design subgrade elevation differs significantly, adjustments will be required to determine the subgrade treatment depth.

Alignment	From Station	To Station	Length (ft)	Representative Boring(s)	GB1 Subgrade Stabilization
Winchester Pike	98+00 (Est.)	100+74	274 (Est.)	B-001-0-13	Proof roll and perform cement stabilization to depth of 12 inches or excavate 12 inches and replace with ODOT Item 703.16C granular material, Type B, C or D, with 712.09 Geotextile Fabric Type D.
Winchester Pike	100+74	107+86	712	B-002-0-13 and B-003-0-13	Proof roll area. No excavation or chemical stabilization anticipated.
Ebright Road	30+00 (Est.)	33+48	348	B-006-0-13	Proof roll and excavate 24 inches and replace with ODOT Item 703.16C granular material Type B or C, with 712.09 Geotextile Fabric Type D. Chemical stabilization not recommended due to low blow counts.
Ebright Road	33+48	42+50 (Est.)	902	B-007-0-13 and B-010-0-13	Proof roll and perform cement stabilization to depth of 16 inches or excavate 24 inches and replace with ODOT Item 703.16C granular material, Type B, C or D, with 712.09 Geotextile Fabric Type D.
Shannon Road	42+50 (Est.)	46+52	402 (Est.)	B-012-0-13	Proof roll and perform cement stabilization to depth of 14 inches or excavate 36 inches and replace with ODOT Item 703.16C granular material, Type B, C or D, with 712.09 Geotextile Fabric Type D.
Shannon Road	46+52	50+87	435	B-013-0-13	Proof roll area. No excavation or chemical stabilization anticipated.
Shannon Road	50+87	54+00 (Est.)	313 (Est.)	B-015-0-13	Proof roll and perform cement stabilization to depth of 14 inches or excavate 16 inches and replace with ODOT Item 703.16C granular material, Type B, C or D, with 712.09 Geotextile Fabric Type D.

Table 4. Subgrade Treatment Summary

Alignment	From Station	To Station	Length (ft)	Representative Boring(s)	GB1 Subgrade Stabilization
Winchester Pike	112+04	122+00 (Est.)	996 (Est.)	B-011-0-13, B-014-0-13 and B-016-0-13	Proof roll area. No excavation or chemical stabilization anticipated.

Note that the limits of the treatment areas are based upon the "Limitations of Study", defined in Section 6.0 of this subgrade exploration report.

Please note that the limits and depth of stabilization provided in the table above are estimated based on the soil conditions encountered in the borings performed during the field exploration. Actual limits and depth of stabilization may differ from the recommendations provided. Per ODOT GB1 requirements, if it is elected to perform station by station stabilization, the entire subgrade should be proof rolled to identify the actual limits of unstable subgrade and depth of stabilization required. Upon completion of the stabilization, areas that required stabilization should be proof rolled to verify that stability has been achieved.

5.1.2 Global Stabilization

Based on the ODOT GB1, when approximately 30 percent or more of the subgrade requires stabilization, consideration should be given to utilizing a global stabilization option. Per ODOT GB1, global stabilization recommendations are based upon the overall average site parameters, as noted in Table 5.

Average	Average	Average	Average Optimum	Average	Design
N _{60L}	Pl	Moisture	Moisture	Group Index	CBR
8	13	17	13	5.6	8

Table 5. Average Site Parameters

Applying the averages in Table 5, GB1 recommends the following global stabilization options, which should be evaluated based upon a cost and constructability analysis:

Option 1. Chemically stabilize the entire subgrade with 14-inches of cement, as per ODOT Item 206. For estimating purposes, utilize a cement content of 6.0 percent by weight of soil. Actual application rates shall be verified by the contractor under Item 206.06 Mixture Design for Chemically Stabilized Soils.

Option 2. Stone stabilize the entire subgrade via a 1.5-foot undercut and replacement with ODOT Item 703.16C granular material, Type B, C or D installed over ODOT Item 712.09 Geotextile Fabric, Type D as detailed in accordance with ODOT Item 204.

As an alternate to cement, lime kiln dust (LKD) may be utilized for the chemical stabilization option and the depth of stabilization can still be maintained. LKD is typically cheaper than traditional cement stabilization and could present a significant cost savings for the stabilization, if it is elected to perform global stabilization. For estimating purposes, utilize an LKD content of 7.0 percent by weight of soil. Per ODOT GB1 requirements, if it is elected to perform global stabilization, the entire subgrade should be stabilized using one of the global stabilization options provided above. Upon completion of the stabilization, the entire subgrade should be proof rolled to verify that stability has been achieved.

5.1.3 Subgrade Design Considerations

California Bearing Ratio (CBR) values for the entire project ranged from 4 to 12 with an average of 8. It is recommended that pavement design be based on the average CBR of 8 with a corresponding Subgrade Resilient Modulus, M_R , of 9,600 psi. Correlation charts indicate a Modulus of Subgrade Reaction (K) of 175 pci and a Soil Support Value (SSV) of 5.3.

In addition, per ODOT GB1, soils with sulfate content in excess of 3,000 ppm cannot be chemically stabilized due to the potential for sulfate heave in the soil. Based on the results of the testing, the sulfate contents of the subgrade soils range from 13 to 53 parts per million (ppm or mg/kg of material). Soil with a sulfate content greater than 3,000 ppm was not encountered in the soil samples tested for this investigation.

Please note that the recommended CBR values consider that the materials utilized for the road subgrade in fill areas are equivalent to, or better than materials at the existing subgrade elevation. Sources of borrow material should be designated in advance of construction. The material should be tested in the laboratory to verify the soil exhibits a minimum design CBR value of 8.

Pavement design is dependent on the inclusion of adequate surface and subsurface drainage in order to maintain the compacted subgrade near optimum moisture conditions throughout the lifetime of the pavement. If underdrain systems are considered, they should be installed in accordance to the specifications presented in Item 204 of the ODOT Construction and Materials Specifications (CMS).

5.2 Pavement Thickness Evaluation

Based on the anticipated traffic loading information provided by ms via email on December 2, 2013, and summarized in Table 6, Rii evaluated both flexible and rigid pavement alternatives at the project site. The proposed minimum pavement section buildups are summarized in the following sections.

	· · · ·			
Intersection Leg	2017 ADT	2037 ADT	24-Hour Truck %	Functional Classification
North	5,220	5,320	3	Urban Collector
South	3,250	4,870	4	Urban Collector
East	8,590	12,270	1	Lishon Minor Artorial
West	15,500	21,610	2	Urban Minor Arterial

Table 6. Anticipated Traffic Loading Information

5.2.1 Flexible Pavement

The flexible pavement alternative was evaluated in accordance with the procedures outlined in the current version of the ODOT Pavement Design Manual, Section 400 -Flexible Pavement Design. Based on the estimated traffic loading, the soil conditions encountered during the investigation, and consideration to the performance of pavement buildups for similar roadways, Rii proposes the following minimum flexible pavement buildup for each leg of the intersection:

Table 7. Flexible Pavement Alternative

Pavement Layer	Thickness
ODOT Item 448 Asphalt Concrete Surface Course, Type 1, PG64-22	1½ inch
ODOT Item 448 Asphalt Concrete Intermediate Course, Type 2, PG64-22	1¾ inch
ODOT Item 302 Asphalt Concrete Base Course	4 inches
ODOT Item 304 Aggregate Base	6 inches
Subgrade	Natural

5.2.2 Rigid Pavement

In addition to the flexible pavement, a rigid pavement alternative was also evaluated in accordance with the procedures outlined in the current version of the ODOT Pavement Design Manual, Section 300 - Rigid Pavement Design. Based on the estimated traffic loading, the soil conditions encountered during the investigation, and consideration to the performance of pavement buildups for similar roadways, Rii proposes the following minimum rigid pavement buildup for each leg of the intersection:

Pavement Layer	Thickness
ODOT Item 451 Reinforced Concrete Pavement	8¾ inch
ODOT Item 304 Aggregate Base	6 inches
Subgrade	Natural

Table 8. Rigid Pavement Alternative

5.3 Foundation Recommendations

It is understood that the existing structure carrying Winchester Pike over Blacklick Creek is currently a 3-span structure supported on 12-inch diameter cast-in-place (CIP) pipe piles (ODOT Item 507.07). Based on the information provided by ms, it is understood that driven CIP pipe piles will be utilized for support of the widened northern section of the existing structure. Rij understands that 12-inch diameter CIP piles will be utilized at the abutments, and 14-inch diameter CIP piles will be utilized at the intermediate piers. Anticipated scour depths are expected to range from 10 feet at the piers to 15 feet at the abutments. Based on the maximum pile loads provided, it is recommended that the proposed CIP piles be embedded as noted in the following table. It should be noted that the abutment and intermediate pier footings were considered to be at a depth of 10.0 feet below the existing ground surface.

Boring			Embedment	Scour Depth ⁴	Pile			
Number	Elevation ¹	Pile Size	Top ²	Тір	Depth ³ (feet)	(feet)	Capacity ⁴ (kips/pile)	
B-004 (Rear Abutment)	754.5	12" CIP	744.5	697.5	47	15	79	
B-005 (Pier 1)	746.1	14" CIP	736.1	694.1	42	10	120	
B-008 (Pier 2)	744.0	14" CIP	734.0	691.0	43	10	120	
B-009 (Forward Abutment)	754.7	12" CIP	744.7	687.7	57	15	79	

Table 9. CIP Pile Recommendations

1. Ground elevation listed is the ground elevation at the boring location. The ground elevation at the pier locations is not the same as the elevations listed.

2. The top of pile elevation is at the proposed bottom of footing elevation at the abutment locations and at the bottom of the proposed pile cap at the pier locations.

3. Embedment depths represent the length of pile in contact with the soil.

4. Scour depth and maximum pile capacities were provided by ms consultants.

NOTE: The top of pile elevation coincides with the bottom of footing elevations, and the estimated pile lengths reflect exclusively the length of the pile in contact with the soil. **Embedment length of the pile into the footing is not included.** Estimated pile lengths are rounded up to the nearest foot.

The pile capacities listed in Table 9 are allowable values and were determined utilizing DRIVEN software (Appendix V) using allowable stress design (ASD) and a safety factor of 2.0. The pile capacity values listed were provided by ms. If the actual pile loads vary significantly from the design loads provided, Rii should be contacted in order to reanalyze the design. Settlement is estimated to be less than 1.0 inch for CIP piles.

We emphasize that the CIP pile lengths and load capacities presented above are estimates using empirical equations based on the derived characteristics of the soils encountered in the subject borings drilled. The most accurate method for determining pile capacities and lengths is to drive test piling at the site and perform either static or dynamic load testing in accordance with ASTM D1143 procedures.

5.3.1 Driven Pile Considerations

Proper pile installation is as important as pile design in order to obtain a cost effective and safe product. Driven piles must be installed to develop adequate soil resistance without structural damage. Because piles cannot be visually inspected after installation, direct quality control of the finished product is impossible. Consequently, substantial control must be exercised over peripheral operations leading to the pile placement within the foundation. It is essential that installation be considered during the design stage to insure that piles shown on the plans can be installed. Construction monitoring should be employed in (1) pile materials, (2) installation equipment, and (3) the estimation of the static load capacity.

It is recommended that the contractor submit a wave equation analysis (bearing graph) of his driving equipment, or the necessary pile driving and equipment data to perform the wave equation analysis, for hammer approval. A constant capacity wave equation analysis (inspector's chart) should also be performed to assist field personnel during inspection in accordance with the 2007 ODOT BDM.

5.4 Lateral Earth Pressure

For the soil types encountered in the borings, the "in-situ" unit weight (γ), cohesion (c), effective angle of friction (ϕ '), and lateral earth pressure coefficients for at-rest conditions (K_o), active conditions (K_a), and passive conditions (K_p) have been estimated and are provided in Table 10 and Table 11. These parameters are considered appropriate for the design of excavation support systems. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials.

Soil Type	γ (pcf) ¹	C (psf)	ф	K _a	K。	Kp
Soft to Medium Stiff Cohesive Soil	110	750	0°	1.0	1.0	1.0
Stiff Cohesive Soil	115	1,250	0°	1.0	1.0	1.0
Very Stiff to Hard Cohesive Soil	120	2,500	0°	1.0	1.0	1.0
Loose to Medium Dense Granular Soil	120	0	29°	0.35	0.48	2.88
Dense to Very Dense Granular Soil	130	0	34°	0.28	0.44	3.54
Compacted Cohesive Engineered Fill	125	1,500	0°	1.0	1.0	1.0
Compacted Granular Engineered Fill	135	0	33°	0.30	0.46	3.39

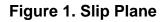
Table 10. Estimated Undrained (Short-term) Soil Parameters for Design

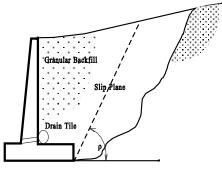
1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.

Table 11. Estimated Drained (Long-term) Soil Parameters for Design
--

Soil Type	γ (pcf) ¹	C (psf)	ф	K _a	K₀	K _p
Natural Cohesive Soil	115	0	26°	0.39	056	2.56
Loose to Medium Dense Granular Soil	120	0	29°	0.35	0.48	2.88
Dense to Very Dense Granular Soil	130	0	34°	0.28	0.44	3.54
Compacted Cohesive Engineered Fill	125	0	28°	0.36	0.53	2.77
Compacted Granular Engineered Fill	135	0	33°	0.30	0.46	3.39

1. When below groundwater table, use effective unit weight, $\gamma' = \gamma - 62.4$ pcf and add hydrostatic water pressure.


These parameters are considered appropriate for the design of subsurface walls and excavation support systems. It is recommended that the subsurface walls be designed based on at-rest conditions. The values in this table have been estimated from correlation charts based on minimum standards specified for compacted engineered fill materials. These recommendations do not take into consideration the effect of any surcharge loading or a sloped ground surface (a flat surface is considered). Earth pressures on excavation support systems will be dependent on the type of sheeting and method of bracing or anchorage.


In order to alleviate the build-up of hydrostatic pressure above the flow line of the stream behind the walls a minimum of 2.0 feet of clean free-draining granular fill (i.e., #57 gravel) should be placed full depth behind the walls along with a filter fabric placed between the granular fill and the natural soil. If granular fill other than #57 gravel is used, it should not have more than 8% (by weight) passing the #200 screen, and should

be compacted to 95% of the maximum dry density. A perforated, corrugated drain tile, wrapped with filter fabric, should be placed along the perimeter at the base of the walls or at the design flow line/flood line for drainage purposes. A clay cap (minimum 1.0-foot thick) should be placed overtop the granular backfill to deter inflow of the surface water. The drainage system should properly outlet to a storm sewer, or to a properly sized sump pump system. Therefore, with a proper dewatering system, below grade walls should be designed for the undrained condition up to the design flood levels. Otherwise, below-grade walls should be designed for the undrained for the undrained condition for the entire depth.

The 2.0 feet of free draining material placed behind the wall prevents the formation of hydrostatic pressures as noted above. However, unless this free-draining granular backfill is placed beyond the slip plane (see Figure 1), it has no influence on the equivalent fluid weight of the soil. If free-draining granular fill (meeting the requirements listed above) is to be placed beyond the slip plane (ρ =45° for at-rest conditions; ρ =45+ ϕ /2 for active conditions), the values presented in Table 7 for the compacted granular engineered fill can be employed, consequently, lowering the pressures on the wall.

Backfill Rankine Zone with Select Backfill

5.5 Scour Data

Continuous sampling was performed for a 6.0-foot interval below the existing creek bed of Blacklick Creek in pier boring B-005 to determine the D_{50} of the riverbed soil. Due to the time constraints associated with closing the Blacklick Trail, continuous sampling was not performed below the creek bed in pier boring B-008. The creek bed soils encountered in this boring were classified as soft brown becoming black sandy silt (ODOT A-4a) overlying alternating layers of dense brown becoming gray gravel and gravel with sand (ODOT A-1-a, and A-1-b). Based upon the grain size analysis performed, the D_{50} of the granular materials (A-1-a, and A-1-b) ranged from 1.572 to 4.380 millimeters, and the D_{95} ranged from 15.506 to 21.484 millimeters. The D_{50} of the cohesive material (A-4a) was 0.096 millimeters, and the D_{95} was 1.334 millimeters. The results of the grain size analysis are summarized in the table below.

D ₅₀ and D ₉₅ Values					
Boring	Sample No.	Depth (feet)	D₅₀ Value (mm)	D ₉₅ Value (mm)	
	SS-3	6.0 – 7.5	0.096	1.334	
B-005-0-13	SS-4	7.5 – 9.0	4.380	21.484	
	SS-5	9.0 – 10.5	1.572	15.506	

Table 12. Scour Sampling Summary

5.6 Construction Considerations

All site work shall conform to the latest ODOT CMS including the requirements that all excavation, embankment preparation and construction should follow ODOT Item 200 (Earthwork).

Prior to beginning excavation, grading and/or embankment operations across the site, all necessary clearing and grubbing shall be completed, including the complete removal of all topsoil and unsuitable fill materials (as determined by a geotechnical engineer or an experienced soil technician), vegetation, debris, saturated and/or soft/loose soils and/or existing pavement sections (where applicable) within the footprint of the proposed pavement and bridge areas.

Cohesive soil, primarily those containing silt, tend to become unstable (i.e., soft and flexing) under repeated loading from heavy rubber-tired vehicles. Therefore, heavy vehicle traffic on subgrades should be limited as much as possible during construction. The subgrade should be closely observed to determine if unstable conditions do develop which will require stabilization as determined by the geotechnical engineer.

The proposed subgrade surfaces should be proofrolled with sufficient proofrolling apparatus (preferably a fully-loaded tandem-axle dump truck), prior to placing engineered fill. A geotechnical engineer or an experienced soil technician should be present during proofrolling to determine if soft soil with inadequate stability exists. Subgrade instability encountered during a proofroll is indicated by deflection, cracking, or rutting of the surface. Soft soil is generally a result of the presence of very moist to wet cohesive soil. Deflecting subgrades may also be due to the presence of subsurface lenses of silt/fine sand, which typically contain water because the soil exhibits a higher porosity than the overlying and/or underlying cohesive soil. Based on the borings drilled, the moisture contents of the cohesive samples tested are considered to be significantly below to significantly above the corresponding optimum moisture contents. Soil in excess of the optimum moisture content creates the possibility of soft or unstable subgrades. It is likely that cohesive subgrade soil exhibiting natural moisture content in excess of its corresponding plastic limit will require some level of stabilization.

The extent/need for subgrade stabilization is entirely dependent on the subgrade conditions (i.e., moisture contents) encountered at the time of construction. If required, the method of stabilization employed is a function of the type of instability encountered, the location (i.e., depth) of the instability and the resources available.

Other stabilization options include 1) scarifying, drying and recompacting, 2) mixing wet soil with dry soil, 3) undercutting unsuitable surficial soil and replacing it with controlled density fill, and 4) a geogrid subgrade reinforcement system. Additional methods of subgrade stabilization are available and certainly may be effective (both physically and economically) in stabilizing the soil. The adequacy of any stabilization method should be verified through the construction of a test section. All proposed subgrade surfaces should be shaped to promote positive drainage, with a minimum slope of 2 percent or 0.25 inches per foot. Adequate drainage is necessary for maintaining the stability of the subgrade. Care should be taken during final grading so that no areas of potential ponding or standing water remain at the subgrade surface.

Generally, materials utilized for engineered fill should free of waste construction debris and other deleterious materials. Fill material utilized for embankment behind the proposed structures, or in areas where embankment fill is required to bring the site to the proposed profile grade should conform to ODOT Item 203, Section 203.02 embankment specifications. Fill material placed beneath pavement in areas where excavate and replacement are required should conform to ODOT Item 203, Section 203.02 granular embankment as specified in Section 5.1.

Most of the natural soils encountered on the site are considered suitable for reuse as structural fill for embankment and pavement support. However, the majority of the soil encountered had natural moisture contents that were well above their corresponding estimated optimum moisture content per ODOT GB1. These soils will likely require some form of moisture conditioning prior to reuse as structural fill. The final determination of whether a material is suitable for reuse as fill should be made by Rii or a field representative thereof.

Embankment construction should be performed in accordance with ODOT Item 203, Section 203.05. Per ODOT Item 203, Section 203.06, fill soil placed for foundation and pavement support should be placed in loose lifts not to exceed 8 inches. Fill soil placed under pavement or structures shall be compacted to not less than the maximum dry density required per ODOT Item 203, Section 203.07. Fill soil should not be placed in a frozen condition or on a frozen subgrade.

Per ODOT Item 203, Section 203.07, fill soil containing excess moisture shall be required to dry prior to or during compaction to a moisture content necessary to obtain the required density. However, for material that displays pronounced elasticity or deformation under the action of loaded rubber tire construction equipment, the moisture content shall be reduced to secure stability. Drying of wet soil shall be expedited by the

use of plows, discs, or by other approved methods when so ordered by the site geotechnical engineer.

5.6.1 Excavation Considerations

All trenching and excavation procedures should follow applicable Occupational Safety and Health Administration (OSHA) standards, including adequate safety precautions conforming to OSHA standards for the personnel installing underground lines. During excavation, if slopes cannot be laid back to OSHA Standards due to adjacent structures or other obstructions, sheeting/trench boxes may be required.

The following table should be utilized as a general guide for implementing OSHA guidelines when estimating excavation back slopes at the various test boring locations. Actual excavation back slopes must be field verified by qualified personnel at the time of excavation in strict accordance with OSHA guidelines.

Table 13. Excavation back Slopes					
Soil	Maximum Back Slope	Notes			
Soft to Medium Stiff Cohesive	1.5 : 1.0	Above Ground Water Table and No Seepage			
Stiff Cohesive	1.0 : 1.0	Above Ground Water Table and No Seepage			
Very Stiff to Hard Cohesive	0.75 : 1.0	Above Ground Water Table and No Seepage			
All Granular & Cohesive Soil Below Ground Water Table or with Seepage	1.5 : 1.0	None			
Rock to 3.0' +/- below Auger Refusal	0.75 : 1.0	Above Ground Water Table and No Seepage			
Stable Rock	Vertical	Above Ground Water Table and No Seepage			

 Table 13. Excavation Back Slopes

The above recommendations are predicated upon construction monitoring and testing by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and monitoring during construction are considered necessary to assure an adequate foundation system and are part of these recommendations.

5.6.2 Groundwater Considerations

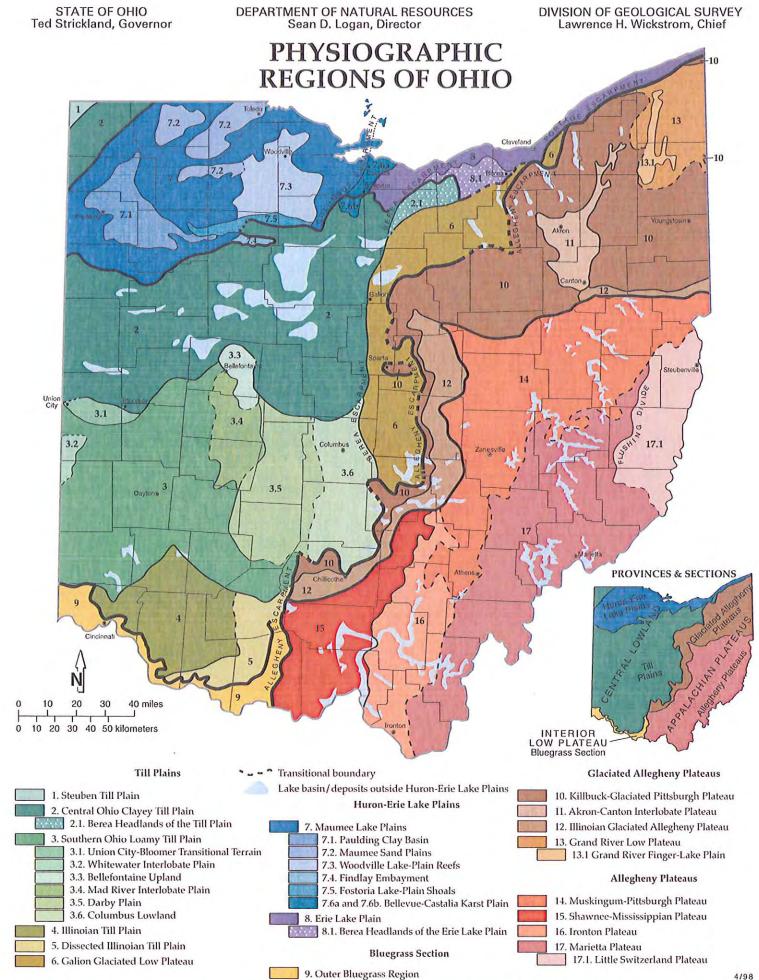
Groundwater is anticipated to be encountered during construction of the proposed structure widening at a level near the normal water elevation in Blacklick Creek. Where encountered during construction, proper groundwater control should be employed and maintained to prevent disturbance to excavation bottoms consisting of cohesive soil, and to prevent the possible development of a quick or "boiling" condition if soft silts

and/or fine sands are encountered. Any seepage or groundwater encountered at this site should be able to be controlled by pumping from temporary sumps. Additional measures may be required depending on seasonal fluctuations of the groundwater level and the level of the creek. Note that the determination of the groundwater table at construction is the responsibility of the contractor.

6.0 LIMITATIONS OF STUDY

The above recommendations are predicated upon construction inspection by a qualified soil technician under the direct supervision of a professional geotechnical engineer. Adequate testing and inspection during construction are considered necessary to assure an adequate foundation system and are part of our recommendations.

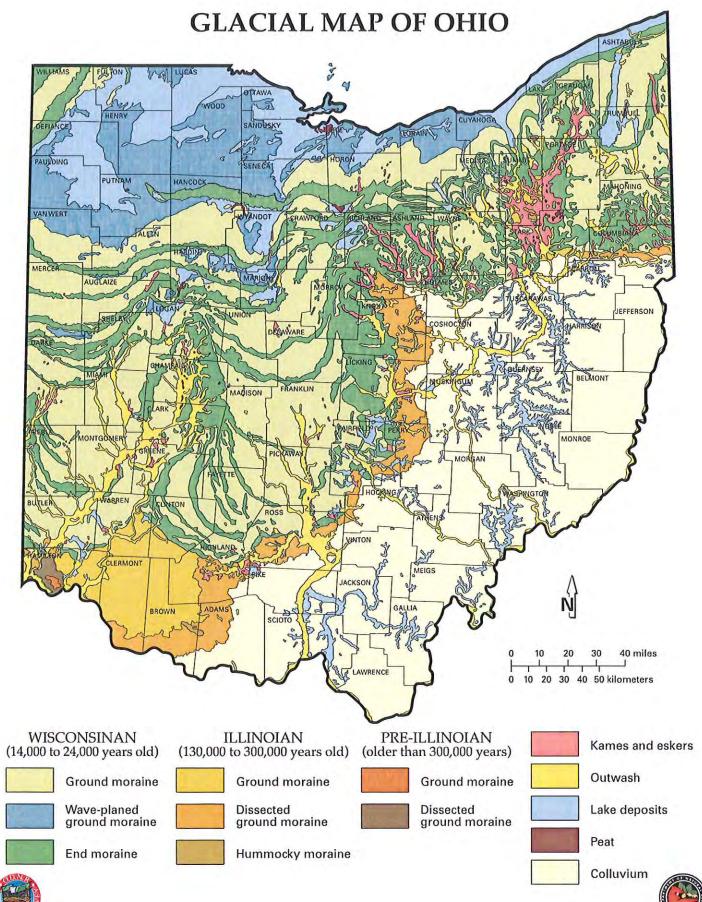
The recommendations for this project were developed utilizing soil information obtained from the test borings that were performed at the proposed site. At this time we would like to point out that soil borings only depict the soil conditions at the specific locations and time at which they were made. The conditions at other locations on the site may differ from those occurring at the boring locations.

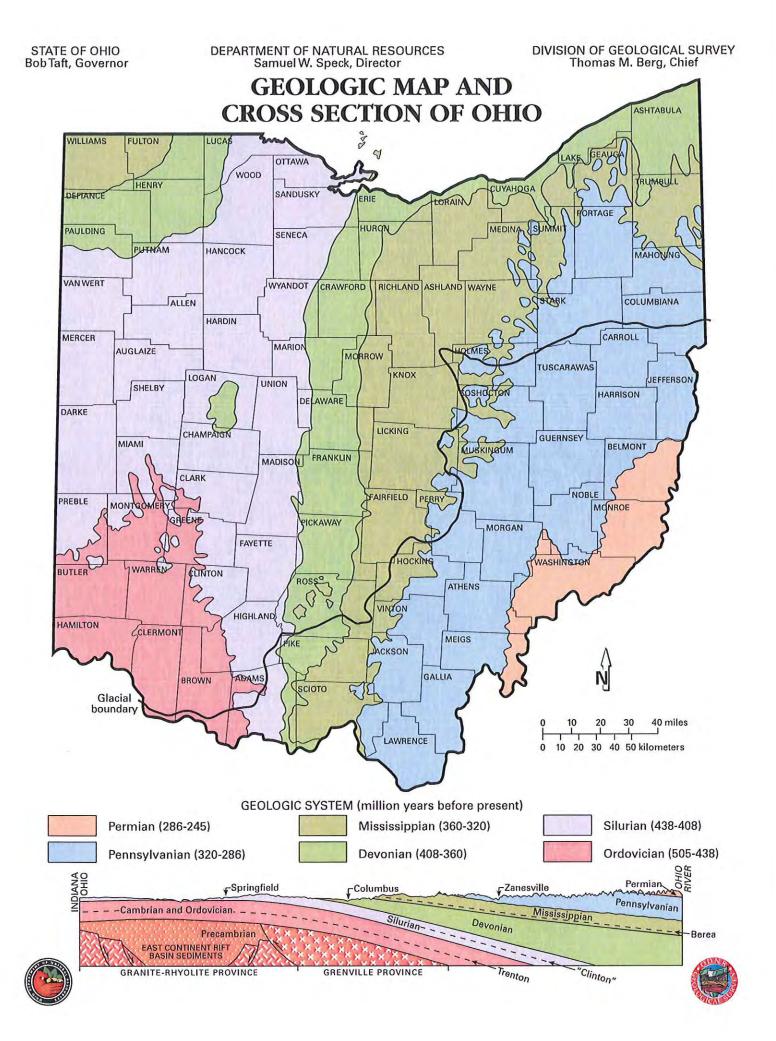

The conclusions and recommendations herein have been based upon the available soil information and the preliminary design details furnished by a representative of the owner of the proposed project. Any revision in the plans for the proposed construction from those anticipated in this report should be brought to the attention of the geotechnical engineer to determine whether any changes in earthwork recommendations are necessary. If deviations from the noted subsurface conditions are encountered during construction, they should also be brought to the attention of the geotechnical engineer.

The scope of our services does not include any environmental assessment or exploration for the presence or absence of hazardous or toxic materials in the soil, groundwater, or surface water within or beyond the site studied. Any statements in this report or on the test boring logs regarding odors, staining of soils, or other unusual conditions observed are strictly for the information of our client.

Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted Geotechnical engineering principles and practices. Resource International is not responsible for the conclusions, opinions, or recommendations made by others based upon the data included.

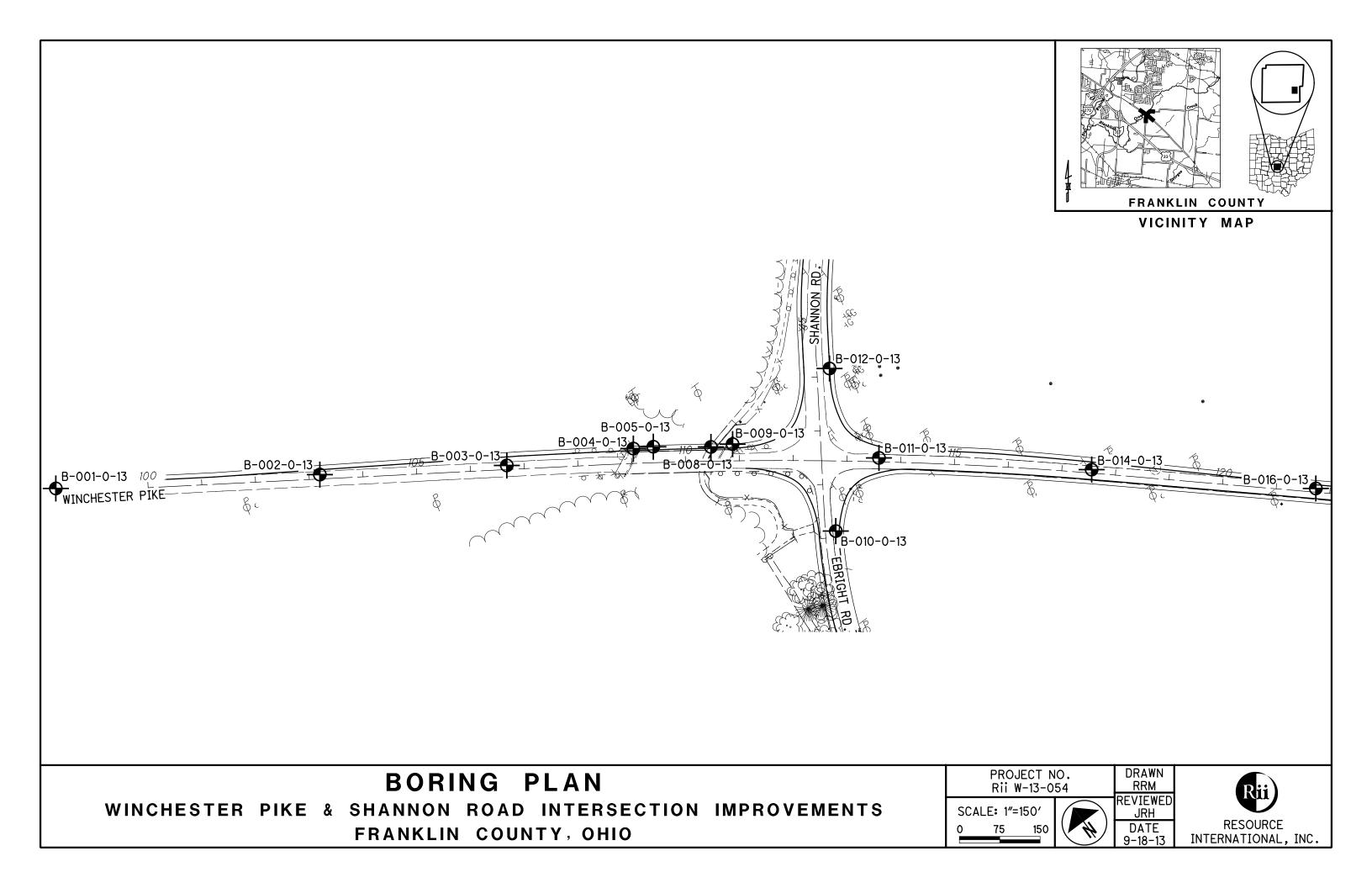
APPENDIX I

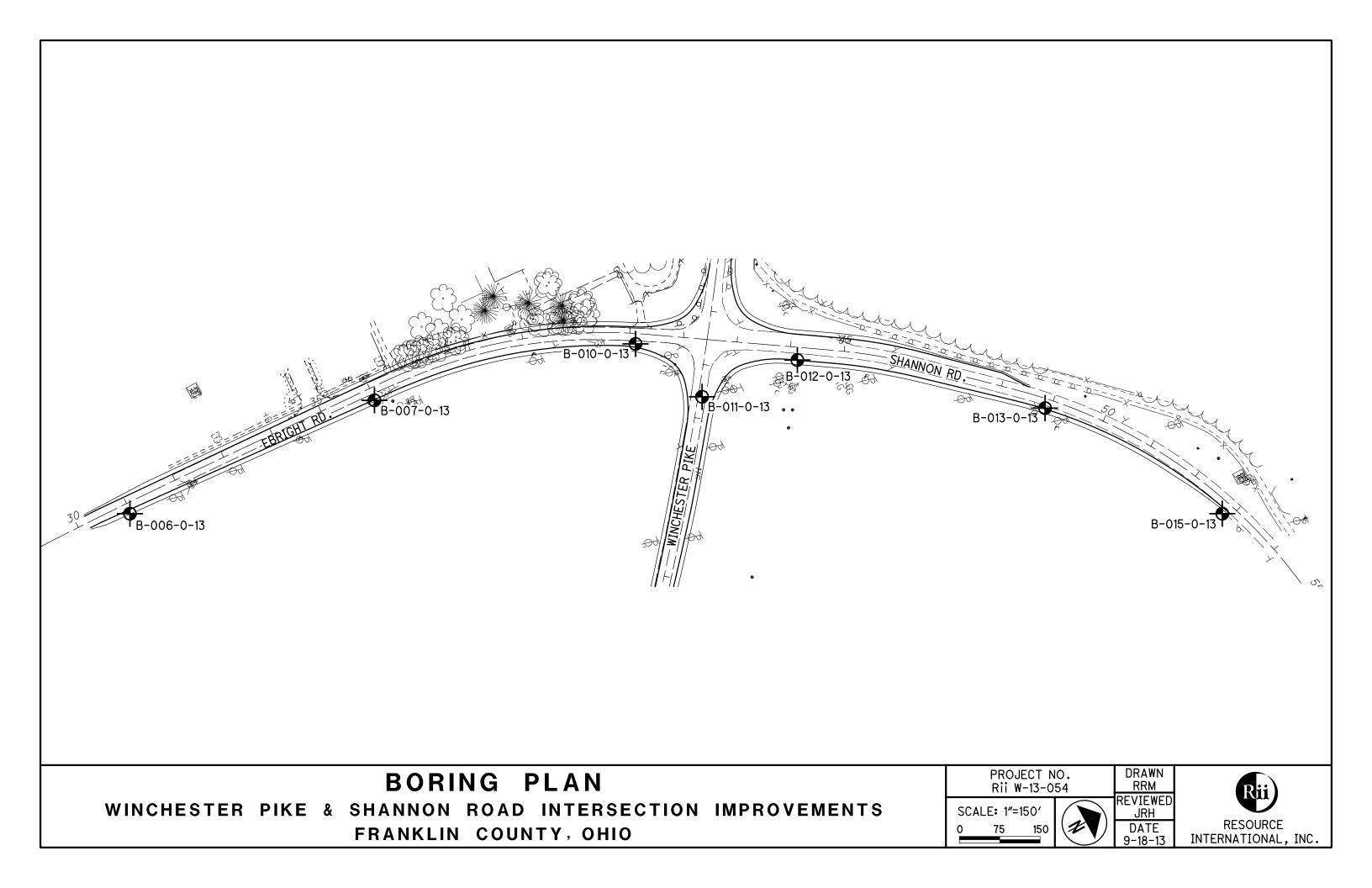

STATE GEOLOGY


Recommended citation: Ohio Division of Geological Survey, 1998, Physiographic regions of Ohio: Ohio Department of Natural Resources, Division of Geological Survey, page-size map with text, 2 p., scale 1:2,100.00.

.....

STATE OF OHIO Bob Taft, Governor DEPARTMENT OF NATURAL RESOURCES Samuel W. Speck, Director DIVISION OF GEOLOGICAL SURVEY Thomas M. Berg, Chief





APPENDIX II

VICINITY MAP AND BORING PLAN

DESCRIPTION OF SOIL TERMS

APPENDIX III

DESCRIPTION OF SOIL TERMS

The following terminology was used to describe soils throughout this report and is generally adapted from ASTM 2487/2488 and ODOT Specifications for Geotechnical Explorations.

<u>Granular Soils</u> - The relative compactness of granular soils is described as: ODOT A-1, A-2, A-3, A-4 (non-plastic) or USCS GW, GP, GM, GC, SW, SP, SM, SC, ML (non-plastic)

Description	Blows per	foot - 3	<u>SPT (N₆₀)</u>
Very Loose	Below		5
Loose	5	-	10
Medium Dense	11	-	30
Dense	31	-	50
Very Dense	Over		50

<u>Cohesive Soils</u> - The relative consistency of cohesive soils is described as: ODOT A-4, A-5, A-6, A-7, A-8 or USCS ML, CL, OL, MH, CH, OH, PT

		confin	
<u>Description</u>	<u>Compr</u>	essio	<u>n (tst)</u>
Very Soft	Less than		0.25
Soft	0.25	-	0.5
Medium Stiff	0.5	-	1.0
Stiff	1.0	-	2.0
Very Stiff	2.0	-	4.0
Hard	Over		4.0

Gradation - The following size-related denominations are used to describe soils:

Soil Fraction	USCS Size	
Boulders	Larger than 12"	
Cobbles	12" to 3"	
Gravel coar	3" to ¾"	
fine	³ ⁄ ₄ " to 4.75 mm (³ ⁄ ₄ " to #4 Sieve)	
Sand coar	4.75 mm to 2.0 mm (#4 to #10 Sieve)	
med	2.0 mm to 0.42 mm (#10 to #40 Sieve)	
fine	0.42 mm to 0.074 mm (#40 to #200 Sie	ve)
Silt	0.074 mm to 0.005 mm (#200 to 0.005 r	nm)
Clay	Smaller than 0.005 mm	

Modifiers of Components - Modifiers of components are as follows:

Term		Range	
Trace	0%	-	10%
Little	10%	-	20%
Some	20%	-	35%
And	35%	-	50%

Moisture Table - The following moisture-related denominations are used to describe cohesive soils:

<u>Term</u>	Range - USCS	Range - ODOT
Dry	0% to 10%	Well below Plastic Limit
Damp	>2% below Plastic Limit	Below Plastic Limit
Moist	2% below to 2% above Plastic Limit	Above PL to 3% below LL
Very Moist	>2% above Plastic Limit	
Wet	≥ Liquid Limit	3% below LL to above LL

Organic Content – The following terms are used to describe organic soils:

Term	Organic Content (%)
Slightly organic	2-4
Moderately organic	4-10
Highly organic	>10

<u>Bedrock</u> – The following terms are used to describe the relative strength of bedrock:

Description	Field Parameter
Very Weak	Can be carved with knife and scratched by fingernail. Pieces 1 in. thick can be broken by finger pressure.
Weak	Can be grooved or gouged with knife readily. Small, thin pieces can be broken by finger pressure.
Slightly Strong	Can be grooved or gouged 0.05 in deep with knife. 1 in. size pieces from hard blows of geologist hammer.
Moderately Strong	Can be scratched with knife or pick. 1/4 in. size grooves or gouges from blows of geologist hammer.
Strong	Can be scratched with knife or pick with difficulty. Hard hammer blows to detach hand specimen.
Very Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to detach hand specimen.
Extremely Strong	Cannot be scratched by knife or pick. Hard repeated blows of geologist hammer to chip hand specimen.

ODOT Size Larger than 12" 12" to 3" 3" to 3/4" 3/4" to 2.0 mm (3/4" to #10 Sieve) 2.0 mm to 0.42 mm (#10 to #40 Sieve)

0.42 mm to 0.074 mm (#40 to #200 Sieve) 0.074 mm to 0.005 mm (#200 to 0.005 mm) Smaller than 0.005 mm

APPENDIX IV

BORING LOGS:

B-001-0-13 through B-016-0-13

Definitions of Abbreviations for Boring Logs

A	=	Adhesion (pounds per square foot)
AS	=	Auger Sample
BCP	=	Bentonite Chips or Pellets
С	=	Cohesion (pounds per square foot)
СВ	=	Cased (Concentric) Boring
C/B	=	Neat Cement/Bentonite Grout
Cl	=	Chloride Ion Concentration (parts per million)
FA	=	Angle of Internal Friction (degrees)
FF	=	Friction Factor
GS	=	Geoprobe Sample
HSA	=	Hollow Stem Auger
HSB	=	High Solids Content Bentonite Grout
К	=	Modulus of Horizontal Subgrade Reaction (kips per cubic foot)
LOI	=	Percent Organic Content (by weight) as determined by ASTM D-2974 (loss on ignition test)
MD	=	Rotary Mud Drilling
NQ	=	Wireline Method (1.875-inch diameter rock core)
NX	=	Conventional Method (2.126-inch diameter rock core)
PC	=	Neat Portland Cement Grout
PID	=	Photo-Ionization Detector Reading (parts per million)
qh	=	Unconfined Compressive Strength of Soil as determined by a hand penetrometer (tons per square foot)
qr	=	Unconfined Compressive Strength of Intact Rock Core as determined by ASTM D-2938 (pounds per square inch)
qu	=	Unconfined Compressive Strength of Soil as determined by ASTM D-2166 (tons per square foot)
quu	=	Unconsolidated-Undrained Triaxial Compressive Strength as determined by ASTM D-2850 (pounds per square foot)
RC	=	Rock Coring
SO ⁴⁻	=	Sulfate Concentration
SFA	=	Solid Flight Auger
SS	=	Split Spoon Sample
3S	=	For instances of no recovery from standard SS interval, a 3.0 inch O.D. split spoon is driven the full length of the standard SS interval plus an additional 6.0 inches to obtain a representative sample. Only the final 6.0 inches of sample is retained. Blow counts from 3S sampling are not correlated with N_{60} values.
SS	=	Soluble Salts (conductivity)
ST	=	Thin-walled (Shelby) Tube Sample
uw	=	"In-Situ" Unit Weight of Soil (pounds per cubic foot)
VIS	=	Visual classification only, no testing performed
W	=	Weight of Hammer and Drill Rods "pushed" split spoon sampler 6-inches.
WD	=	Rotary Wash Drilling

6	D	PROJECT TYPE:	:	WINCHES ROADW	TER PIKE				/ T.F. / A.D.		ILL RIG		ME-750X (S CME AUTO		8)	STAT		OFFSE T·		98+28. ICHEST	-	-		RATION ID 1-0-13
K		PID:		BR ID:				4.5" - CF			LIBRAT			4/26/13		ELEV					EOB:		7.0 ft.	PAGE
		START:	7/15/13	END:	7/15/13	SAMPLING METH	HOD:	SPT		EN	ERGY I	RATIO	(%):	77.7		LAT /	LONG	3:	39.892	395028	° N / 82	2.86708	824 ° W	1 OF 1
			MATER	IAL DES	CRIPTION		ELEV.	DEPT	SPT/				SAMPLE	HP	0	GRAD	ATIO	N (%)	A	TTERE	3ERG		ODOT	BACK
			-	AND NOT	ËS		750.9	DEFI	113	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL L	L PL	PI	WC	CLASS (GI)	FILL
C).7' - ASF	PHALT (8	.0")				750.2			_														
).3' - COI	NCRETE	(4.0")				749.9		- 1 -										_		<u> </u>	<u> </u>		
0	GRAVEL,	LITTLE	CLAY, MO	DIST.	SILT , AND FINE		748.4		- 2 -	6 4 5	12	56	SS-1	-	37	3	16	31	13 N	IP NP	NP	19	A-4a (2)	$\begin{array}{c} \stackrel{\checkmark}{\rightarrow} \stackrel{\lor}{} \stackrel{\bullet}{} \stackrel$
			,		L T AND CLAY , INE GRAVEL, I	///			- 3 - -	6 7 7	18	56	SS-2	2.50	4	15	15	43	23 2	9 17	12	15	A-6a (7)	
									- 4 - - - 5 -	5 6 7	17	56	SS-3	1.50	-	-	-	-	-		-	18	A-6a (V)	1>1 1> 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
							743.9	—ЕОВ	- 6 - - 7	5 5 5	13	67	SS-4	1.00	-	-	-	-	-		-	20	A-6a (V)	$= \begin{cases} \downarrow L^{\vee} \uparrow L^{\vee} \\ \uparrow J > L \\ \downarrow > L \\ \downarrow > L^{\vee} \uparrow L^{\vee} \\ \uparrow L^{\vee} \uparrow L^{\vee} \\ \downarrow > L^{\vee} \downarrow > L^{\vee} \downarrow > $ L^{\vee} \downarrow > L^{\vee} \downarrow > L^{\vee} \downarrow > L^{\vee} \downarrow > L^{\vee} L^{\vee} \downarrow > L^{\vee} L^{

D	PROJECT	: Winche Road	ESTER PIKE	DRILLING FIRM			I / T.F. / A.D.		MMER:		ME-750X (SI CME AUTO		8)	STAT		DFFSET: r·	1 WINCI)3+20. HESTE			-	RATION ID 2-0-13
	PID:	BR ID:				4.5" - CF			LIBRAT			4/26/13		ELEV			.2 (MS		EOB:		7.0 ft.	PAGE
	START:	7/15/13 EN	D: 7/15/13	SAMPLING MET	'HOD:	SPT		EN	IERGY F	RATIO	(%):	77.7		LAT /	LONG	:39	.89164	9918 °	N / 82	.86562	848 ° W	1 OF 1
		MATERIAL DE	SCRIPTION		ELEV.	DEPT	ЧS	SPT/		REC	SAMPLE	HP	0	GRAD		N (%)	AT	ERB	ERG		ODOT	BACK
		AND NO	DTES		752.2	DLI I	115	RQD	¹ •60	(%)	ID	(tsf)	GR	CS	FS	SI CL	LL	PL	PI	WC	CLASS (GI)	FILL
0.7' - /	ASPHALT (8	.0")			751.5																	
_ 0.3' - (CONCRETE	(4.0")			751.2		- 1 -															
	UM DENSE, TRACE CLA		EL AND SAND , SC	ME	749.7		- 2 -	21 7 7	18	33	SS-1	-	39	23	13	24 1	NP	NP	NP	10	A-1-b (0)	$\begin{array}{c} < \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$
BLAC FINE	K SILT AND SAND, MOIS	CLAY , LITTLE F ST TO WET.	NISH GRAY AND				- 3 -	6 4 6	13	56	SS-2	2.00	11	0	5	49 35	33	21	12	22	A-6a (9)	
-		SULFATE CONT R PRESENT IN \$					- 4 - - - 5 -	2 2 2	5	56	SS-3	1.50	-	-	-		-	-	-	28	A-6a (V)	1 > ^L 1 >
> 					745.2	—ЕОВ	- 6 - - 7	4 4 4	10	56	SS-4	1.00	-	-	-		-	-	-	30	A-6a (V)	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING; CAVE-IN DEPTH @ 5.2' ABANDONMENT METHODS, MATERIALS, QUANTITIES: ASPHALT PATCH; COMPACTED WITH THE AUGER SOIL CUTTINGS

6		PROJECT TYPE:	:	WINCHES ⁻ ROADW		DRILLING F						DRILL RIG: <u>CME-750X (SN 310218)</u> HAMMER: CME AUTOMATIC						ION / NMEN	-	RATION ID 3 -0-13					
	Y	PID:		BR ID:					4.5" - C			LIBRAT		4/26/13		ELEV			′55.8 (N		ER PIK		7.0 ft.	PAGE	
		START:	7/15/13	END:	7/15/13	SAMPLING	METH	HOD:	SPT	Г	EN	IERGY I	RATIO	(%):	77.7		LAT /	LONG	€:	39.8911	19702 '	' N / 82	.864596	6961 ° W	1 OF 1
			MATER	IAL DES	CRIPTION			ELEV.	ELEV. DEPTHS			N ₆₀	REC	SAMPLE	ΗP	C	GRAD	ATIO	N (%)	A	ITERE	BERG		ODOT	BACK
			A	AND NOT	ËS			755.8	DLF	1115	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL L	_ PL	PI	WC	CLASS (GI)	FILL
0.	7' - ASF	PHALT (8	.0")				\bigotimes	755.1			-														
0.	3' - COI	NCRETE	(4.0")			7		754.8		- 1 -	<u> </u>										_				
F	NE GR/	AVEL, LÍ	TLE CLA	Y, DAMF	Y SANDY SIL T D. ENT = 47 PPM			753.3		- 2 -	21 7 7	, 18	33	SS-1	-	20	20	20	25	15 N	PNF	NP	10	A-4a (1)	
G					BROWN TO AND CLAY, DA					- 3 -	8 8 9	22	56	SS-2	-	28	24	16	31	1 2	9 17	12	8	A-2-6 (0)	
										4 - - 5 -	10 12 13	32	67	SS-3	-	-	-	-	-	-	-	-	11	A-2-6 (V)	
2 10.400-								748.8	—ЕОВ	- 6 - - 7	12 19 13	41	67	SS-4	-	-	-	-	-		-	-	8	A-2-6 (V)	

ſ	Rii	PROJEC TYPE: _		WINCHEST		-		/ OPERATOF 1 / LOGGER:		I / R.B.		RILL RIG		ME-750X (S CME AUTC		,		TION /	OFFS	-			13 / 27 R PIK			RATION ID 4-0-13
		PID: START:	7/10/13	BR ID: B END:	7/11/13	DRILLING			4.25" H						<u>4/26/13</u> 77.7	5		/ATIO / LON					EOB:		0.0 ft. 051 ° W	PAGE 1 OF 4
ŀ		START.						ELEV.				ENERGY RA		SAMPLE					0 DN (%		ATT			.003037	ODOT	BACK
				AND NOTE	S			754.5	DEP	THS	RQE		(%)	ID	(tsf)				SI		LL	PL	PI	WC	CLASS (GI)	
		OPSOIL (,				\square	753.8		_	_															$\begin{vmatrix} \gamma L^{\vee} & \gamma \\ \gamma \rangle \\ \downarrow \rangle \land \downarrow \rangle$
	TRACE	FINE GR	AVEL, MC	DIST.	LITTLE CLAY,					- 1 - - - 2 -	23	4 9	61	SS-1	-	3	16	24	44	13	NP	NP	NP	15	A-4a (4)	
				RESENT I	N 33-1 NT = 53 PPM			751.5		- 3 -		-														
					n to gray si Sand, Mois ⁻					— 3 - - — 4 -	33	10	100	SS-2	2.50	0	2	31	40	27	28	17	11	19	A-6a (7)	
ſ										- 5 - - - 6 -	-	5														
V-13-054.GP	-WOO	D AND RO	DOT FIBE	RS PRESE	ENT IN SS-3					- - 7 -	5 5	6 14	100	SS-3	3.50	-	-	-	-	-	-	-	-	17	A-6a (V)	
013\M	FILL: S	TIFF. DAF	K BROW	NISH GRA	Y TO GRAY S	ILTY		746.5		- 8 -	_															
ROJECTS/2	CLAY, S		ARSE TC		ID, LITTLE FIN					- 9 -	33	8	78	SS-4	1.75	11	9	14	20	46	35	15	20	18	A-6b (10)	
U:\GI8\PI	-COBE	BLES PRE	SENT TH	IROUGHOU	JT					- 10 - - - 11 -																
7/13 17:10 -										- 12 -	22	4 8	100	SS-5	1.75	-	-	-	-	-	-	-	-	28	A-6b (V)	
- 12/1			SE, GRA	GRAVEL	WITH SAND A	ND	ġ.K	741.5	W	— 13 - —																
OH DOT.GDT	SILT, W	/E1.								- 14 - - - 15 -	2 1	2 4	100	SS-6	-	-	-	-	-	-	-	-	-	27	A-2-4 (V)	
NG - 0			SE, GRA	GRAVEL	AND SAND, LI	TTLE	- PÚ	739.0		-	-															1> N 1; < V <
- LAT/LON	SILT, W									- 16 - - - 17 -	1 1	5	67	SS-7	-	-	-	-	-	-	-	-	-	30	A-1-b (V)	
<11 -RI					ENT IN SS-7			736.5	W	- 18 -	-															$\frac{1}{7}L^{V}$
ING LOG 8)				Y, MOIST T	D SAND , TRAG O WET.	JE TO				- 19 - -	2 4	12	67	SS-8	-	30	39	15	9	7	NP	NP	NP	18	A-1-b (0)	$-\frac{1}{7}L^{\vee}$
2013 ODOT BORING LOG										- 20 - - - 21 -	-	-														$\overrightarrow{1}$ \overrightarrow{L} $\overrightarrow{1}$
2013 O											-															< L ^V 7 7 L ^V 7 7 N 4 7 V 4

PID:	BR ID:	PROJECT:	WINCHES		STA	TION / C		_		4.13 / 27.				_		-	_			G 2 OF	
	MATERIAL DES AND NO			ELEV.	DEPTH	S S	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		CS	ATIO FS				ERB	ERG PI	wc	ODOT CLASS (GI)
IEDIUM DEN ITTLE SILT, <i>bove)</i>	NSE, GRAY GRAVEL A TRACE CLAY, MOIST	AND SAND, TRAC	E TO	732.5	-	- 23			(/0)	שו		GR		13	10	UL		r'L	FI		- ()
					-	- 24 - 6 - 25	9 10	25	78	SS-9	-	-	-	-	-	-	-	-	-	13	A-1-b (V)
					-	- 26 - 27															
					-	- 28	,														
						- 29 - 7 - 30	9 12	27	100	SS-10	-	-	-	-	-	-	-	-	-	13	A-1-b (V)
	TO HARD, GRAY SAN			722.5	-	- 31 - 32															
TTLE COAF	RSE TO FINE GRAVE	L, MOIST.			-	- 33															
					-	- 34 - 4 - 35	9 9	23	78	SS-11	4.50	-	-	-	-	-	-	-	-	11	A-4a (V)
COBBLES	PRESENT THROUGH	OUT			-	- 36 - 37															
					-	- 38 - 39 3	3														
					-	- 40	7 4	14	100	SS-12	3.25	-	-	-	-	-	-	-	-	11	A-4a (V)
					-	- 41 - 42															
					-	- 43 - - 44 - 3	3														A-4a (4)
					_		5 7	16	89	SS-13	2.00	14	14	19	26	27	20	12	8	11	A-4a (4)

PID:	BR ID:		CHEST		STATION /		=1:		04.13 / 27.							_			G 3 O	· ·	
		DESCRIPTION NOTES		ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs		DN (%) CL		ERB PL	ERG	wc	ODOT CLASS (GI)	BA F
VERY STIFF LITTLE COA above)	TO HARD, GRAY S	ANDY SILT, SOME CLAY, /EL, MOIST. (same as		708.9	46 47 48			(70)			GK	03	F3	31	GL				WC		VT 7 VT 7 VT 7 VT 7 VT 7 VT 7 VT 7 VT 7 VT 7
-COBBLES	PRESENT THROUG	GHOUT			- 	17 47 30	100	67	SS-14	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)	17 17 17 17
/ERY DENS	E, GRAY GRAVEL , S	SOME COARSE TO FINE		702.5	- 51 - 51 - 52																7 V T 7 V T 7
SAND, WET.					- 53 - 53 - 54	26 23	70	100	SS-15	_	-	_	-	_	-	-	-	_	12	A-1-a (V)	V77V77
					- 	31	-														
					- 58 - 59 - - 60	12 26 26	67	83	SS-16	-	-	-	-	-	-	-	-	-	9	A-1-a (V)	
DENSE TO V TRACE SILT	/ERY DENSE, GRA' , TRACE CLAY, WE	Y GRAVEL AND SAND , T.		692.5	61 - 62 - 62																V 7 7 V 7 V 7 7 V 7 V 7 V 7 V 7 V 7 V 7
-STONE FR	AGMENTS PRESE	NT THROUGHOUT			63 - - 64 - 65	20 20 23	56	100	SS-17	-	33	36	19	5	7	NP	NP	NP	15	A-1-b (0)	L
					- 66 - - 67 - - 67 - - 68 -																, 7 V 7 7 V 7 7 V , 7 V 7 7 V 7 7 V
						2															- 7 L 7 L 7 X

'ID:	BR ID:	PROJE		WINCHEST			STATIC	-			04.13/27.							_		3 PG	6 4 OF	= 4 B-00)4-0-
		L DESCRIPTION			ELEV.		PTHS	SP	T/ N ₆₀		SAMPLE			RAD					ERBE			ODOT	BA
	ANI	D NOTES			685.4			RC		(/0)	ID	(tsf)	GR	CS	_	_	CL	LL	PL		WC	CLASS (GI)	
							_	14	4 39 16	89	SS-18	-	-	-	-	-	-	-	-	-	20	A-1-b (V)	7LV
				L C	684.5	EOB	-7)															1 > ٢
							a. ==:::					~											
	SEEPAGE ENCOUNTERE											.0'											
	MENT METHODS, MATER	RIALS, QUANTITIES	S: CON	IPACTED WITH	THE AUGE	R 50 LE	S BENT	NITE CH	IPS AND	SOIL C	UTTINGS												

ſ	Rii	PROJECT		WINCHESTE ROADWA		DRILLING F	FIRM	/ LOGGER	:R	NII / R.B. I / S.T.	HA	RILL RIG		ME-750X (S CME AUTO		,		FION / NMEN			109+ INCHE					RATION ID
		PID: START:	7/11/13	BR ID: END:	7/11/13	DRILLING N SAMPLING			4.25" H SP ⁻			LIBRAT			4/26/13 77.7			/ATIO			(MSL)		-		5.0 ft. 295 ° W	PAGE 1 OF 3
ŀ		51AN1.						ELEV.			SPT/	1		SAMPLE	-				N (%)		ATTE			505745	ODOT	BACK
			A	AND NOTES				746.1	DEP.	THS	RQD		(%)	ID	(tsf)			FS		CL			PI	wc	CLASS (GI)	FILL
	0.8' - TOF	PSOIL (1	0.0")				$\left \right\rangle$	745.3			-															$\frac{1}{7}L^{V}\frac{1}{7}L^{V}$
	FINE GR	AVEL, M			DME CLAY, T	RACE				- 1 - - 2 -	WOH 2 2	5	72	SS-1	1.50	-	-	-	-	-	-	-	-	21	A-4a (V)	
-	FILL: SO CLAY, TF	FT, BRO RACE FIN	WN TO BI NE GRAVE	LACK SANI EL, MOIST	DY SILT , SOM TO WET.	ΛE		743.1	W	- 3 - 	2 4	12	33	SS-2	0.25	_	_	_	_	_	-	-	-	22	A-4a (V)	
.GPJ	-WOOD	FIBERS	PRESEN	T IN SS-3						- 5 -	1															
V-13-054	DENOE		0041/51		<u></u>			738.6		- 7 -	2	6	100	SS-3	0.25	2	11	43	23	21	26	24	2	63	A-4a (2)	
TS\2013\V	SAND, TI	RACE SI	LT, TRAC	E CLAY, M ESENT IN	E TO COARS OIST. SS-4	5E		737.1	_ W	- 8 -	7 14 18	41	100	SS-4	-	62	15	12	6	5	NP	NP	NP	9	A-1-a (0)	$<, \sqrt{<}$
SI8/PROJEC	CLAY, M	OIST.			RACE SILT,			735.6		- 9 - - 10 -	12 14 17	, 40	83	SS-5	-	47	23	15	7	8	NP	NP	NP	9	A-1-b (0)	
3 17:10 - U:\(DENSE, TRACE S			OME COAF	RSE TO FINE	SAND,				11 - - 12 -	9 12 15	35	100	SS-6	-	-	-	-	-	-	-	-	-	13	A-1-a (V)	
r - 12/17/1				E, GRAY G	RAVEL AND	SAND,		733.1		- 13 -																
OH DOT.GD	TRACE S	5121, VVE	1.							14 - 15	5 17 1(35	83	SS-7	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	
RII- LAT/LONG -										16 17	10 10 8	23	72	SS-8	-	-	-	-	-	-	-	-	-	15	A-1-b (V)	
G LOG 8X11 -F				AY Sandy Gravel, M	' SILT , SOME OIST.	CLAY,		728.1		- 18 - - 19 -	23	9	61	SS-9	3.25	_	_	_	_	_	_	-	_	14	A-4a (V)	
2013 ODOT BORING LOG	-COBBL	ES PRE	SENT TH	ROUGHOU	т					- - 20 - - 21 -		¥														

PID:	BR ID:		ESTER PIKE	STATION /		_		11.28 / 29.		-		_		-				G 2 O	I I I
	MATERIAL DI		ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD			<u> </u>		ERBI		wc	ODOT CLASS (GI)
STIFF TO V SOME COA above)	AND N ERY STIFF, GRAY SA RSE TO FINE GRAVE	ANDY SILT, SOME CLAY,	724.1	 - 23		-	(70)		(ເຮເ)	GK	65	гð	SI	CL	LL	PL	PI	VVC	
				- 24 -	1 3 4	9	61	SS-10	1.00	-	-	-	-	-	-	-	-	14	A-4a (V)
-COBBLES	PRESENT THROUG	HOUT		- 25 - - 26 -															
IEDIUM ST COARSE TO	TIFF, GRAY Sandy Si D Fine Gravel, Moi	LT, SOME CLAY, SOME ST.	719.1	- 27 - 28															
				29 	3 5 7	16	50	SS-11	0.50	21	13	13	27	26	22	13	9	14	A-4a (4)
			714.1	 - 31 															
Hard, gra To fine gr	Y Sandy Silt , Some Ravel, Moist.	E CLAY, SOME COARSE	7 14.1	— 32 — - - 33 —															
				34 35	4 8 15	30	100	SS-12	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)
-COBBLES	PRESENT THROUG	HOUT																	
				- 37 - 38															
				39 - 40	8 20 42	80	89	SS-13	4.50	-	-	-	-	-	-	-	-	12	A-4a (V)
			704.1	 - 41 - 42															
DENSE TO LITTLE SIL	VERY DENSE, GRAY F, TRACE CLAY, WET	GRAVEL AND SAND,		- 42 43															
-STONE F	RAGMENTS PRESEN	T IN SS-14		- 44 -	17 13 16	38	67	SS-14	-	-	-	-	-	-	-	-	-	13	A-1-b (V)
				- 45 -	10														

	BR ID:	PROJECT:	WINCHEST		STATIC	N / OFFS	ET:		1.28 / 29.										G 3 O	
	MATERIAL DESCR AND NOTES			ELEV.	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD			o) CL	ATT LL		ERG PI	wc	ODOT CLASS (GI)
ENSE TO VEF ITTLE SILT, TI	RY DENSE, GRAY GRA RACE CLAY, WET. (sar	VEL AND SAND		700.5	- 46	\$ -		(70)				00	10							
					- 47 - - 48	_														
					- 49 	1/	48	78	SS-15	-	-	-	-	-	-	-	-	-	15	A-1-b (V)
					- 	-														
					— 52 - — 53	-														
					- 54 55	20	57	83	SS-16	-	-	-	-	-	-	-	-	-	13	A-1-b (V)
					_ 50 57	- - -														
					- 58 -	-														
					59 60	14	39	94	SS-17	-	16	40	30	13	1	NP	NP	NP	17	A-1-b (0)
					- 6' 62	-														
					- 6: -	3-														
				681.1		14 12 12	31	100	SS-18	-	-	-	-	-	-	-	-	-	21	A-1-b (V)

D::	PROJECT: TYPE:		ICHESTER	PIKE	-	6 FIRM / OF G FIRM / L			/ R.B. / S.T.		ILL RIG MMER:		ME-750X (S CME AUTO		/		TION / NMEN	OFFSE		30+97.3 8RIGHT			-	RATION ID 6-0-13
	PID:	BR	-		-	METHOD		4.5" - CF	-					4/26/13		ELEV			749.7 (N		EOB:		6.0 ft.	PAGE
	START:	7/9/13	END:	7/9/13	SAMPLIN	G METHO	D:	SPT		EN	ERGY I	RATIO (%):	77.7		LAT /		G :	39.887	17202 °	N / 82.	863722	579 ° W	1 OF 1
		MATERIAL	DESCRI	PTION			ELEV.	DEPT	ЦС	SPT/	N ₆₀	REC	SAMPLE	HP	0	GRAD	ATIO	N (%)	A	TTERE	3ERG		ODOT	BACK
		AND	O NOTES				749.7		110	RQD	1160	(%)	ID	(tsf)	GR	CS	FS	SI	CL L	L PL	PI	WC	CLASS (GI)	
FILL: ST COARSE	E SÁND, LI	VN SILT AN I TTLE FINE	GRAVEL,				<u>749.4</u> 748.2		- 1 -	1 2 3	6	50	SS-1	2.00	13	27	12	35	13 3	1 17	14	18	A-6a (4)	× + × × + × × × × × × × × × × × × × × ×
STIFF, B	LE SS-1: S BROWN SIL	SULFATE C	ONTENT	PRESENT IN = 33 PPM E TO COARS					- 2 -	1 1 1	3	67	SS-2	1.75	15	32	14	26	13 3	8 18	20	19	A-6b (3)	
0, 112, 2		_ 0101022,							_ 4 -	2 3 4	9	56	SS-3	1.00	-	-	-	-	-		-	23	A-6b (V)	
							743.7	W еов	5 - 6	4 4 6	13	78	SS-4	1.50	-	-	-	-	-		-	16	A-6b (V)	

NOTES: GROUNDWATER INITIALLY ENCOUNTERED @ 5.2' ABANDONMENT METHODS, MATERIALS, QUANTITIES: COMPACTED WITH THE AUGER SOIL CUTTINGS

D ::	PROJECT:	WINCHESTER	PIKE	DRILLING FIRM / SAMPLING FIRM			/ R.B. / S.T.	_	ILL RIG		/IE-750X (S CME AUTC		/	-	TON / NMEN	OFFSE T:			66 / 23. ROAD		-	RATION ID 17-0-13
	PID:	BR ID:		DRILLING METHO		4.5" CF/				ION DA		4/26/13			ATION		47.8 (N		EOB:		6.0 ft.	PAGE
	START:	7/9/13 END:	7/9/13	SAMPLING METH	IOD:	SPT		EN	ERGY F	ratio (%):	77.7		LAT /	LONG	G:	39.8885	4431 °	N / 82.	863605	264 ° W	1 OF 1
		MATERIAL DESCRI	PTION		ELEV.	DEPT	ПС	SPT/	N	REC	SAMPLE	HP	(GRAD	ATIO	N (%)	A	TERE	BERG		ODOT	BACK
		AND NOTES			747.8	DEFI	13	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL LI	. PL	PI	WC	CLASS (GI)	FILL
VERY S	E SAND, S	WN CLAY, SOME TO OME TO AND SILT, T		го	747.5		- 1 -	1 2 3	6	78	SS-1	2.75	6	19	11	43	21 4	5 24	21	18	A-7-6 (11)	$\begin{pmatrix} & & \\ & $
	L, DAMP To PLE SS-1: S	SULFATE CONTENT	= 13 PPM				- 2 -	3 3 5	10	67	SS-2	3.75	5	24	14	36	21 4	19	25	18	A-7-6 (11)	$<, \vee, <, \cdot$
				ro			- 4 -	4 7 10	22	67	SS-3	3.00	-	-	-	-	- -	-	-	12	A-7-6 (V)	<1 1 < 1
,					741.8	—ЕОВ	_ 5 _ _ 6	7 10 14	31	28	SS-4	-	-	-	-	-		-	-	13	A-7-6 (V)	7 L V 7 L 7 X V 7 X 7 X V 7 X 7 X V 7 X 7 X V 7 X

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

PROJECT: _	ROADWAY	DRILLING FIRM / SAMPLING FIRM	/ LOGGER	RII / S.B.	F	DRILL R HAMME	२:	ME-750X (S CME AUTC		,	ALIG	NMEN	_	-	110 VINCH		34 / 26 R PIK			RATION II 8-0-13
		DRILLING METHO		4.25" HSA					4/26/13) (MSL				9.0 ft.	PAGE 1 OF 3
	7/12/13 END: 7/12/13 IATERIAL DESCRIPTION	SAMPLING METH	ELEV.	SPT	SP1	T /		(%): SAMPLE	77.7		GRAD				ATT				654 ° W	BACK
14	AND NOTES		744.0	DEPTHS	RQ		, (%)	ID					<u> </u>) CL		PL	PI	wc	ODOT CLASS (GI)	FILL
0.9' - CONCRETE (1		\times																		
			743.1	- 1 -																
0.4' - GRANULAR BA	, DARK GRAY AND BLACK SA		142.1		-															727
SILT, LITTLE CLAY, V				- 2 -	-															7 LV 7
					1															$ \langle \rangle \langle $
	TS AND SLIGHT ORGANIC OD	or		- 3 -	1	4	94	SS-1	0.50	-	-	-	-	-	-	-	-	32	A-4a (V)	127
PRESENT IN SS-1				_ 4 _		2														7 LV 7
					-															
			738.5	- 5 -	1															1>11
	E, GRAY GRAVEL, SOME COA				1															747
TO FINE SAND, TRA	CE SILT, TRACE CLAY, MOIST]	- 6 -																JLV J
				- 7 -	4															1 × 1 × 1
-STONE FRAGMEN	TS FROM 7.5' TO 8.0'	$\circ \bigcirc \circ$							-	56	22	11	10	1	17	12	4	10	A-1-a (0)	767
-WET WOOD FRAG	MENTS FROM 8.0' TO 9.0'			- 8 -	8	30	78	SS-2	-	50	22		10	-	17	13	-		()	
	R = 92.9% FROM 8.0' TO 9.0'		735.0	W o		12		001	-	-	-	-	-	-	-	-	-	129	A-1-a (V)	L 1 <l< td=""></l<>
	RAY GRAVEL WITH SAND AND	SILT,		W 9 -																727
WET.		₿H		- 10	4															7 LV 7
]		-															$ < \vee < $
		ι D'		- 11 -	-															727
			-	W 12	1															7 LV 7
				W 12 -																
		Patte		— 13 —	5															1211
		ŀ₩.			6	7 17	67	SS-3	-	30	45	19	6	0	20	13	7	18	A-2-4 (0)	
		bi H		- 14 -	-															5 LV 5
			729.0		1															1 7 1
	F, GRAY SANDY SILT , LITTLE	то		— 15 —																767
SOME CLAY, LITTLE	FINE GRAVEL, MOIST.			- 16 -																JLV J
					-															1>11
				- 17	-															767
				- 18	4															JLV J
				- 18 -	46		78	SS-4	1.00	-	-	-	-	-	-	-	-	14	A-4a (V)	L 1 < L
				- 19 -		8														1> 1 1 1 1 1 1 1 1 1 1 1 1 1
					-															1 LV 7
				- 20 -	-															
					1															1211
				- 21 -	1															747
																				<,v <

PID:	BR ID:	PROJECT:	WINCHES		STATION .		ET:		17.84 / 26.							_			G 2 O	F3 B-0	08-0-
	MATERIAL DES			ELEV.	DEPTHS	SPT/ RQD	N ₆₀		SAMPLE			RAD		<u> </u>	·			ERG		ODOT CLASS (GI)	BA FI
	AND NO RY STIFF, GRAY SAN		то IIII	722.0		RQD	00	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC		
SOME CLAY above)	, LITTLE FINE GRAVE	L, MOIST. <i>(same a</i>	as		- 23 - 24 -	2 7 12	25	50	SS-5	4.00	18	14	15	42	11	NP	NP	NP	12	A-4a (4)	
					- 25 -	-															
					- 26 - - - 27 -																
					28 29	5 5 9	18	72	SS-6	2.50	-	-	-	-	-	-	-	-	15	A-4a (V)	1>
						-															
					- 32 -																
					- 33 - - - 34 -	14 8 8	21	72	SS-7	2.50	-	-	-	-	-	-	-	-	12	A-4a (V)	7 4 7 4
					35 36	-															7 4 7 4 7 4
					- 37	20															- 7 < 1 7 < 7 7 < 1 7 < 7 × 7
					- 38 - - - 39 -	24 26	65	94	SS-8	3.50	11	12	15	39	23	24	16	8	13	A-4a (5)	
DENSE TO V	/ERY DENSE, GRAY G MOIST	GRAVEL AND SAN	D,	703.5	40 	-															1 >
	,			0	- 42 -																
					43 - 44	15 17 19	47	94	SS-9	-	-	-	-	-	-	-	-	-	13	A-1-b (V)	
					- 45																7 4 7 7

PID:	BR ID:	PROJECT:	WINCHESTER PI		STATION /	-		47.84 / 26.			START:			_		-	3 OF 3	B-00	3-0-
		ESCRIPTION	ELE		PTHS	SPT/ RQD N ₆₀		SAMPLE			RADAT				ERBEI			DDOT ASS (GI)	BAG
DENSE TO TRACE SIL		NOTES (GRAVEL AND SAND bove)		.4	46 - 47		(%)	ID	(tst)	GR	CS FS	SI	CL		PL	PI W			FII V V V V V V V V V V V V V V V V V V V
			ं ्रिव • D के रे प्र • रिव 695	.0EOI		15 20 20 20	100	SS-10	-	-		-	-	-	-	- 1	2 A-		
TEQ: QE		@ 9.0'; GROUNDWATER																	

RESOURCE INTERNATIONAL	,				_															
PROJECT:	WINCHESTER PIKE	DRILLING FIRM /	OPERATO	R: RII / R.B.		ORILL RIG	: <u> </u>	1E-750X (SI	N 3102 ⁻	18)	STAT	ION /	OFFS	SET:	11()+88.0	05 / 31	.2' Lt		
TYPE:	ROADWAY	SAMPLING FIRM	/ LOGGER:	RII / S.T.	H	HAMMER:	(CME AUTO	MATIC		ALIG	NMEN	IT:	v	VINCH	IESTE	R PIK	E	B-00	9-0-13
PID:	BR ID:	DRILLING METHO	DD:	4.25" HSA		CALIBRAT			4/26/13		ELE\		N:				EOB:			PAGE
START: 7/8/		SAMPLING METH		SPT		ENERGY F			77.7			LON							1137 ° W	1 OF
	ERIAL DESCRIPTION		ELEV.			T (SAMPLE			GRAD		_				ERG		I	DAC
MA H	AND NOTES			DEPTHS	SP1 RQ		(%)	ID	(tsf)	GR			<u> </u>	r'		PL	PI	wc	ODOT CLASS (GI)	BAC
0.3' - TOPSOIL (3.0")	AND NUIES		754.7				(/0)	ישו	((3))	GR	5	гэ	ગ					WC		$\frac{1}{2} L^{V} \tilde{A}$
	RAY GRAVEL, SOME CO																			1 L. 1 1 > L 1
	SILT, TRACE CLAY, MOIS		5	- 1 -														<u> </u>		
					35	17	83	SS-1		68	10	6	-	4		NP	NP	10	A 1 0 (0)	1211
-ASPHALT FRAGMENT				- 2 -	9	4	03	33-1	-	00	18	0	7			INP	INP	12	A-1-a (0)	1 LV 1
-SIMILAR TO BASE MA		κO		_ L		-												<u> </u>		1>11
	DY SILT, SOME FINE GRAV		751.7	— 3 —	-															767
LITTLE CLAY, MOIST.	JI SILI, SOME FINE GRA	/EL,		-														<u> </u>		4 > 4
LITTLE OLAT, MOIOT.				- 4 -	2	6	0.1	00.0	4.05	0.0		-	20	10		10		47	A 4= (4)	767
					3	2 6	94	SS-2	1.25	28	8	7	38	19	28	19	9	17	A-4a (4)	SLV -
-SAIVIPLE SS-2: SULFA	TE CONTENT = 47 PPM		740.0	- 5 -		-										-		┣──		121
FILL: VERY DENSE, GR/	V CDAVEL MOIST	KU	749.2		-													1		7LV 7
(CONCRETE FRAGMEN		10 A	a	- 6 -														┣──		1 > 1 ~
		Port			40 35	5 51	44	SS-3				-						8	A 1 0 0 0	TLV.
		\circ		- 7 -	30	4	44	33-3	-	-	-	-	-	-	-	-	-	°	A-1-a (V)	<, v
		\circ		_ L		-												├ ──		12
			746.7	- 8 -	-															5LV
	F, GRAY TO BROWN CLA Y OARSE SAND, TRACE FIN																	L		1 < 1
GRAVEL, MOIST.				- 9 -	1	2	70	00.4	1 00				- 4	07	1	04		04	A 7 0 (40)	7LV
,					1	1 3	72	SS-4	1.00	4	4	11	54	27	42	21	21	31	A-7-6 (13)	1 < 1
				- 10 -	ļ	-												├──		7L
					-															<, v
				- 11 -														<u> </u>		176. 1750.
]		2	0	100	00 5	1 00									0.5		JLV.
				- 12 -	2	6	100	SS-5	1.00	-	-	-	-	-	-	-	-	25	A-7-6 (V)	1>1
																		<u> </u>		-7 LV .
				— 13 —	-															1>1-
									0.05										A 7 0 0 0	17L .
LOOPE DEOWN OF ME			740.7	- 14 -	1	_	400	00.0	0.25	-	-	-	-	-	-	-	-	30	A-7-6 (V)	<, v
CLAY, WET.	EL WITH SAND AND SILT, T	RACE			3	4 9	100	SS-6	-	37	19	11	27	6	30	22	8	20	A-2-4 (0)	12 12 12
			700.0	- 15 -		T												⊢		JLV.
			739.2		-													1		1>1.
TRACE SILT, WET.	NSE, GRAY GRAVEL AND			W 16														├──		7 LV -
					6	16	64	<u> </u>										10		$ \langle \rangle \rangle \langle \rangle \rangle$
		o O		- 17 -	8	4 16	61	SS-7	-	-	-	-	-	-	-	-	-	12	A-1b (V)	$\begin{pmatrix} 1 \\ 7 \\ 1 \end{pmatrix}$
				 														├──		JLV.
		6.0		W 18 -	-													1		12
		aQ.	ا ۹	⊢ ∎														<u> </u>		JLV.
		lo C		- 19 -	9													1.0		1 > 1
		o t			9	26 11	89	SS-8	-	-	-	-	-	-	-	-	-	10	A-1-b (V)	TLV.
		¢⊋ ∼	4	- 20 -	I	11												⊢		142
		K•O																1		11L .
		2		- 21	4													1		<, v
					-													1		
			•																	<, v <

'ID:	BR ID:		ICHESTER PIKE	STATION /		-)+88.05 / 31		-		_						G 2 O	F3 B-00
		DESCRIPTION NOTES	ELEV.	DEPTHS	SPT/ RQD	I60 RE	C SAMPLE	HP (tsf)		GRAD		<u> </u>) CL		ERBE	ERG PI	wc	ODOT CLASS (GI)
IEDIUM DE RACE SIL		RAY GRAVEL AND SAND,							GK		гэ	01	UL		FL	٢1	WC	
STONE F	RAGMENTS PRESEI	NT IN SS-9		24 25	⁸ 9 3	2 7	3 SS-9	-	-	-	-	-	-	-	-	-	12	A-1-b (V)
				 _ 26 														
ARD, GRA AND, TRA	Y silt and clay , L Ce fine gravel, M	ITTLE COARSE TO FINE IOIST.		27 - 28 -														
COBBLES	PRESENT THROUG	GHOUT		29 30	5 6 1 6	6 8	3 SS-10	4.50	-	-	-	-	-	-	-	-	16	A-6a (V)
DOSE TO	MEDIUM DENSE, GF	RAY GRAVEL WITH	722.7	- 31														
	, and Clay , Moist			— 33 — - — 34 —	8	-												
COBBLES	PRESENT THROUG	GHOUT		_ 35 _	9 2 13	28 3	1 SS-11	-	-	-	-	-	-	-	-	-	13	A-2-6 (V)
				— 36 — — 37 —														
					6													
				- 39 - - - 40	8 2 10	23 44	4 SS-12	-	16	52	18	5	9	25	12	13	18	A-2-6 (0)
				41 42														
				 - 43 -														
				44 45	1 2 3	6 3	9 SS-13	-	-	-	-	-	-	-	-	-	13	A-2-6 (V)
				- 45 -														

	R ID: MATERIAL DESCI		WINCHE	STER PIKE		TATION /				38.05 / 31.2 SAMPLE			STAR GRAD				D: <u>7</u> ATTE			G 3 O	
	MATERIAL DESCI			709.1	DEPT	HS	SPT/ RQD	N ₆₀	(%)	ID	HP (tsf)	GR		FS	SI) CL		PL	PI	wc	ODOT CLASS (GI)
AND, SILT, AN bove) ENSE TO VER	DIUM DENSE, GRAY G D CLAY, MOIST TO W RY DENSE, GRAY SAN E CLAY, DAMP TO MO	GRAVEL WITH (ET. (same as	INE	707.7		- 46 - 47 48 -			<u> </u>												
						- +	14 34 28	80	72	SS-14	-	-	-	-	-	-	-	-	-	11	A-4a (V)
						- 51 - - 51 - - 52 - 															
					- 53 - - 54 - - 55 -	20 20 24	57	72	SS-15	-	-	-	-	-	-	-	-	-	7	A-4a (V)	
						- 59 - - 59 - - 60 -	15 14 15	38	89	SS-16	-	39	9	9	31	12	NP	NP	NP	12	A-4a (2)
	e, gray sandy silt , e clay, moist.	, AND FINE		692.7		 - 61 - 62 															
TOTVEE, EITTE				689.7	—ЕОВ	- 63 - - 64 -	³ 8 10	23	83	SS-17	-	-	-	-	-	-	-	-	-	15	A-4a (V)

D ::	PROJECT TYPE:		ICHESTER OADWAY	PIKE	-		DPERATOR		II / R.B. I / S.T.		RILL RIG		ME-750X (S CME AUTO		/	STAT ALIGI		offsi T:			11.77 / 6HT RC		' Rt	-	RATION ID 0-0-13
	PID:	BRI	-		DRILLING			4.5" Cl			LIBRAT			1/26/13		ELEV				(MSL)		OB:	6	5.0 ft.	PAGE
	START:	7/9/13	END:	7/9/13	SAMPLIN	G METH	OD:	SPT	-	EN	IERGY I	RATIO	%):	77.7		LAT /	LONG	G:	39.88	985136	68 ° N	/ 82.8	363104	708 ° W	1 OF 1
		MATERIAL	DESCRI	PTION			ELEV.	DEP	гие	SPT/		REC	SAMPLE	HP	(GRAD	ATIO	N (%)) /	ATTE	RBE	RG		ODOT	BACK
		AND	NOTES				752.0	DLF	1113	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	FILL
VERY	SE TO FINE	WNISH GRA	LE FINE	GRAVEL, M			<u>751.7</u> 750.5		- 1 -	2 2 3	6	50	SS-1	2.50	17	14	16	30	23	28	15	13	19	A-6a (5)	V T V T V V T V V T V V T V V T V V T V V T V
VERY	STIFF, BRC	SULFATE CC WNISH GRA SAND, LITT	Y SILTY	CLAY, SOM					- 2 -	4 4	12	78	SS-2	3.50	18	13	18	25	26	29	13	16	16	A-6b (5)	
									- 4 -	4 4 6	13	78	SS-3	4.00	-	-	-	-	-	-	-	-	17	A-6b (V)	
·							746.0	—ЕОВ	- 5 -	6 8 8	21	100	SS-4	3.50	-	-	-	-	-	-	-	-	18	A-6b (V)	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

		ROJECT: (PE:		WINCHEST ROADW/		_DRILLING F SAMPLING				II / T.F. / A.D.		ILL RIG		ME-750X (SP CME AUTO		8)	STAT ALIGN		OFFSI	_		3+59.5 ESTEI				RATION ID 1-0-13
4	PIE			BR ID:					4.5" - C			LIBRAT			4/26/13		ELEV				(MSL)		EOB:		7.0 ft.	PAGE
	ST	TART:	7/15/13	END:	7/15/13	SAMPLING	METH	OD:	SPT		EN	ERGY F	ratio ((%):	77.7		LAT /	LONG	G:	39.89	90020	14 ° N	/ 82.8	362586	414 ° W	1 OF 1
			MATER	IAL DESC	RIPTION			ELEV.	DEPT	ЧS	SPT/	N ₆₀	REC	SAMPLE	ΗP	0	GRAD	ATIO	N (%)) .	ATT	ERBE	RG		ODOT	BACK
				ND NOT	ES			754.8	DELL	110	RQD	• 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	FILL
0.7	' - ASPHA	ALT (8.	.25")				\bigotimes	754.1			-															
0.3	' - AGGRI	EGATE	BASE	4.0")		_	XX			- 1 T																
					AVEL, SOME F E CLAY, MOIS		000	752.3		- 2 -	21 7 9	21	56	SS-1	-	59	23	8	9	1	NP	NP	NP	8	A-1-a (0)	JLV JL
	L: VERY ACE FINE				-T , SOME CLA	ιY,				_ 3 -	8 5	16	56	SS-2	3.00	3	7	27	40	23	23	18	5	19	A-4a (6)	
-5	SAMPLE S	SS-2: 5	SULFATE	CONTE	NT = 27 PPM			750.8																		JLV JL
					OWNISH GRAY						8 5	41	56	SS-3	-	-	-	-	-	-	-	-	-	9	A-2-6 (V)	
	-		RICK FF	RAGMENT	S PRESENT						27	·														$< \nu ^{<} \vee >$
TH	ROUGHC	DUT				0			- 6 -	50/5"	-	100	SS-4	-	-	-	-	-	-	-	-	-	3	A-2-6 (V)	76 76	
								747.8	FOB																	1 LV 1 L 1 X 1 X

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING; CAVE-IN DEPTH @ 6.8'

D ::	PROJECT: TYPE:	WINCHESTER	R PIKE	DRILLING FIRM / SAMPLING FIRM					LL RIG		/IE-750X (SI CME AUTO		/	STAT		OFFS	-			7 / 23.: ROAD	-	-	RATION ID 2-0-13
	PID:	BR ID:		DRILLING METHO	DD:	4.5" - CFA		CALI	IBRAT	ION DA	TE:	1/26/13		ELE\	/ATIO	N:	752.7	(MSL	_)	EOB:		5.0 ft.	PAGE 1 OF 1
	START:	7/10/13 END: MATERIAL DESCRI AND NOTES		SAMPLING METH	OD: ELEV. 752.7	SPT DEPTHS			N ₆₀	RATIO (REC (%)	%): SAMPLE	77.7 HP (tsf)	GR	GRAD	/ LON ATIC		_	-		N / 82. ERG PI		ODOT CLASS (GI)	BACK
LOOSE, LITTLE	FINE GRAV	0") H GRAY SANDY SIL /EL, MOIST.	T , LITTLE C	LAY,	752.7	- - 1	_3	3 3	8	56	SS-1	-	16		22	40			NP			A-4a (5)	$\begin{array}{c} \downarrow \\ \uparrow \\ \downarrow \\$
VERY S SILT, SO	TIFF TO HA	SULFATE CONTENT ARD, BROWNISH GF SE TO FINE SAND, I /EL, MOIST.	RAY TO GRA			- 2	3	4 4	10	94	SS-2	2.00	1	6	27	52	14	25	17	8	18	A-4b (6)	
		,		+++++++++++++++++++++++++++++++++++++++		- 4	_4	5 5	13	83	SS-3	4.25	-	-	-	-	-	-	-	-	17	A-4b (V)	
			746.7	— EOB6	6	7 8	19	94	SS-4	2.75	-	-	-	-	-	-	-	-	20	A-4b (V)			

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

D ::)	PROJECT: TYPE:	WINCHESTER F		DRILLING FIRM			I / R.B. / S.T.		RILL RIG		ME-750X (S CME AUTO		/	STAT ALIG		OFFS	-	48+ SHANI		5 / 17.2 ROAD	-	-	RATION ID 3-0-13
	PID:	BR ID:		DRILLING METH		4.5" - Cl			LIBRAT			4/26/13		ELEV				(MSL	-	EOB:		6.0 ft.	PAGE
	START:	7/10/13 END:	7/10/13	SAMPLING MET	HOD:	SPT		EN	IERGY I	RATIO ((%):	77.7		LAT /	LON	G :	39.8	391528	37 ° N	/ 82.8	614315	508 ° W	1 OF 1
		MATERIAL DESCRIP	TION		ELEV.	DEPT	лю	SPT/		REC	SAMPLE	HP	(RAD	ATIC	N (%)	ATT	ERBE	ERG		ODOT	BACK
		AND NOTES			746.0	DLI I	110	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	FILL
FILL: ME Sand, S	ILT, AND C	, ISE, BROWNISH GRA LAY , DAMP.		. WITH	745.6		- 1 -	3 4 5	12	78	SS-1	-	48	14	11	22	5	31	15	16	7	A-2-6 (1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FILL: ME		NTS PRESENT IN SS ISE, DARK BROWNIS I LT , TRACE CLAY, DA	SH GRAY G	RAVEL			- 2 -	7 9 7	, 21	67	SS-2	-	40	15	13	24	8	29	19	10	12	A-2-4 (0)	$\leq \vee \leq 1$
-ASPH/	ALT FRAGI	MENTS AND SLAG PF	RESENT IN	SS-3	741.5	W	- 4 -	3 5 4	12	83	SS-3	-	-	-	-	-	-	-	-	-	10	A-2-4 (V)	1 > L 1 > L 7 2 L
		Y SILT AND CLAY , LIT E FINE GRAVEL, MOI		SE TO	740.0	—ЕОВ	- 5 - - 6	3 5 5	13	78	SS-4	3.50	-	-	-	-	-	-	-	-	22	A-6a (V)	

NOTES: SEEPAGE ENCOUNTERED @ 4.0'; CAVE-IN DEPTH @ 5.8'

ſ		JECT:		INCHESTER ROADWAY		-	RM / OPERATOI FIRM / LOGGER:		RII / T.F. RII / A.D.		NILL RIG		ME-750X (SI CME AUTO		8)	STAT ALIGN		DFFSET	1 WINC	17+55. HESTE			-	RATION ID 4-0-13
I	PID:					DRILLING M		4.5" -			LIBRAT			4/26/13		ELEV			2.1 (MS		EOB:		7.0 ft.	PAGE
	STAF	RT:	7/15/13	_ END:	7/15/13	SAMPLING N	METHOD:	SF	νT	EN	IERGY F	ratio ((%):	77.7		LAT /	LONG	: 39	.88932	6156 °	N / 82.	861500	0331 ° W	1 OF 1
			MATERIA	L DESCR	IPTION		ELEV.		THS	SPT/		REC	SAMPLE	HP	0	GRAD	10IT/	N (%)	AT	TERB	ERG		ODOT	BACK
			A٨	ID NOTES			752.1	DLF	1113	RQD	IN ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI CI	. LL	PL	PI	WC	CLASS (GI)	FILL
	0.8' - ASPHAL	T (9.0	D")				751.3			-														
F	0.2' - AGGREO	GATE	BASE (3	.0")		/	751.1		- 1 T	10														$\frac{1}{2}L^{\vee}$
	MEDIUM DEN FINE TO COA DAMP.						° \° 749.6		- 2 -	10 5 4	12	56	SS-1	-	59	23	8	9 1	NP	NP	NP	7	A-1-a (0)	1>1 1> 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
	STIFF, BROW GRAVEL, MOI -SAMPLE SS	ST.				FINE			- 3 -	8 7 6	17	56	SS-2	2.00	5	15	20	37 23	3 27	21	6	18	A-4a (5)	
							746.6		- 4 - - - 5 -	3 2 3	6	67	SS-3	1.50	-	-	-		-	-	-	20	A-4a (V)	1> 1 1 1 1 1 1 1 1 1 1 1 1 1
	VERY STIFF, FINE SAND, T					SE TO	745.1	EOR	- - 6 - - 7	5 6 7	, 17	78	SS-4	3.00	-	-	-		-	-	-	22	A-6b (V)	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING; CAVE-IN DEPTH @ 5.5' ABANDONMENT METHODS, MATERIALS, QUANTITIES: ASPHALT PATCH; COMPACTED WITH THE AUGER SOIL CUTTINGS

D ::)	PROJECT: TYPE:	WINCHESTE		DRILLING FIR			RII / R.B. RII / S.T.		RILL RIC		ME-750X (S CME AUTO			STAT ALIG		OFFS	-			9 / 21.8 ROAD		-	RATION ID 5-0-13
	PID:	BR ID:		DRILLING MET	HOD:		5" - CFA	c	ALIBRA		ATE:	4/26/13		ELEV	/ATIO	N:	748.1	(MSL	.)	EOB:	(5.0 ft.	PAGE 1 OF 1
	START:	7/10/13 END:	7/10/13	SAMPLING ME			SPT		NERGY			77.7		-		-				-		512 ° W	
		MATERIAL DESCR			ELE\		DEPTHS	SPT RQE		(%)	SAMPLE	HP (tsf)	GR	GRAD cs	FS)N (% SI) CL	ATT	PL	ERG	wc	ODOT CLASS (GI)	BACK FILL
0 7' - TO	PSOIL (8.0		3		748.					(70)	ID.	((51)	GR	6	гə	51	CL	LL	PL	PI	WC		$\frac{1}{2}L^{V}\tilde{L}$
FILL: HA	RD, LIGHT	BROWN SILT AND SAND, TRACE FINE			747.		- - 1 -	3	4 9	44	SS-1	4.50	8	7	17	49	19	32	19	13	17	A-6a (8)	$\begin{array}{c} 1 > 1 \\ 1 > 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
-STYRO PRESEN VERY S	DFOAM FR NT IN SS-1 TIFF TO H/	AGMÉNTS AND RO ARD, BROWN SANI	DOT FIBERS	/		<u> </u>	- 2 - - 2	4 4	7 14	67	SS-2	4.50	2	7	24	42	25	NP	NP	NP	16	A-4a (6)	
-SAMPI	LE SS-2: S	E GRAVEL, MOIST. SULFATE CONTENT NTS PRESENT IN S	T = 40 PPM				3 4	2 2	8	83	SS-3	2.00	-	-	-	-	-	-	-	-	21	A-4a (V)	
,					742.	1E	— 5 – - ов — 6—	5 5	6 14	94	SS-4	2.00	-	-	-	-	-	-	-	-	21	A-4a (V)	

NOTES: GROUNDWATER NOT ENCOUNTERED DURING DRILLING

	PROJECT: WINCHESTER PIKE	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		DRILL RIG	`	/	STATION / OF		121+73.38 / 7 CHESTER PII		PLORATION ID B-016-0-13
	PID: BR ID:	DRILLING METHOD:	4.5" - CFA			4/26/13	ELEVATION:	750.5 (N			PAGE
	START: <u>7/15/13</u> END: <u>7/15/13</u>	SAMPLING METHOD:	SPT	ENERGY	Ratio (%):	77.7	LAT / LONG :	39.8885	567975 ° N / 8	2.86038143 ° W	V 1 OF 1
	MATERIAL DESCRIPTION	ELE/	/. DEPTHS	SPT/ N ₆₀	REC SAMPLE	HP	GRADATION	(%) A	TTERBERG) OD	OT BACK
	AND NOTES	750.5		RQD N ₆₀	(%) ID	(tsf) GR	CS FS S	I CL LI	L PL PI	WC CLASS	S (GI) FILL
	0.7' - ASPHALT (8.25")	749.8	8 – –								
	0.3' - AGGREGATE BASE (4.0")	749.	5 - 1 -							_	
	MEDIUM DENSE, BLACK AND GRAY GRAVEL , LIT FINE TO COARSE SAND, TRACE SILT, TRACE CL MOIST.		0 - 2 -	6 5 16 7	33 SS-1	- 77	11 4 7	7 1 N	P NP NP	11 A-1-a	a (0) $\begin{vmatrix} \zeta L^{\vee} & \zeta L^{\vee} \\ \gamma L^{\vee} & \gamma L^{\vee} \\ \zeta L^{\vee} & \zeta L^{\vee} \\ \gamma L^{\vee} & \gamma L^{\vee} \end{vmatrix}$
	STIFF, DARK GRAY TO MOTTLED GRAY SANDY S SOME CLAY, TRACE FINE GRAVEL, MOIST. -ORGANIC ODOR PRESENT IN SS-2	ILT,	- 3 -	² 2 6	33 SS-2	1.50 5	14 19 3	8 24 3	8 30 8	31 A-4a	a (5) $\begin{vmatrix} 3 > 1 & 3 \\ 2 & 2 \\ 3 & 2 \\ 2 & 3 \\ 2 & 4 \\ 3 & 5 \\ 2 & 4 \\ 2 & 4 \\ 3 & 5 \\ 2 & 4 \\ $
	-SAMPLE SS-2: SULFATE CONTENT = 40 PPM	745.	0	2 1 4 2	56 SS-3	1.50 -				23 A-4a	$\mathbf{a}(\mathbf{V}) = \begin{pmatrix} 1 > 1 \\ 1 > 1$
-054.GFJ	MEDIUM STIFF, BROWNISH GRAY SILTY CLAY , LI COARSE TO FINE SAND, TRACE FINE GRAVEL, M		5 EOB 7	³ 4 10 4	100 SS-4	0.50 -				28 A-6b	$(V) \xrightarrow{\leq L^{\vee} \neq L}{\leq L^{\vee} \neq L}$

APPENDIX V

PAVEMENT CORE DATA SUMMARY

										Pavement Core Data Summary
RESOURCE	6350 Col Telep Fax N	lum bho	nbu one:	ıs, (: (6	Ohi 614)	io 4) 82	1323 23-49	1 949		PROJECT Winchester Pike/Shannon Rd Improvements LOCATION Franklin County JOB No. W-13-054 BORING/CORE No. B-006-0-12 DATE CORE OBTAINED 7/15/2013
	Core Co	omp	osit	tion						Comments/Remarks
Core Number B-006-0-12	Lift Thickness (in.) 1.25 1.00 1.50 2.75	→ → → → → → → → → → → → → → → → → → →			Concrete	Aggregate/Granular Base				 A few air voids evident in the top four lifts of the 404 asphalt Some air voids evident in the 402 lift of the asphalt No base depth given
Total Pavement Thickness =	8.00	in.	<u> </u>				phalt ess =	8	3.00	in. Total Concrete 0.00 in. Total Base 0.00 in. Thickness = 0.00 in. Thickness =
			· ····································	· · · · · · · · · · · · · · · · · · ·	USPEN			AB		13-054 06-0-12

					Pavement Core Data Summary
RESOURCE PROVIDENT	Co Telep	lumbus phone:	s, Ohio (614) 8	Gateway 43231 323-4949 823-4990	PROJECT Winchester Pike/Shannon Rd Improvements LOCATION Franklin County JOB No. W-13-054 BORING/CORE No. B-011-0-12 DATE CORE OBTAINED 7/15/2013
	Core C	ompositio	on		Comments/Remarks
Core Number B-011-0-12	Lift Thickness (in.) 1.25 1.00 1.00 2.50 2.50 4.00	 404 404 404 404 404 404 404 		Aggregate/cranual base	 Some deterioration evident in the surface lift of 404 possibly due to the coring operation. Broken stone void evident between first and second lift of the 404 asphalt
Total Pavement Thickness =	8.25	in.		Asphalt 8.25	in. Total Concrete 0.00 in. Total Base 4.00 in. Thickness = 0.00 in. Thickness = 4.00 in.
				w- B-a	13-054 01 - 0-12

									Pavement Core Data Summary
RESOURCE	6350 Co Telep Fax N	lumt hon	bus, ne: (6	Oh 314)	io 4) 82	3231 3-49	49		PROJECT Winchester Pike/Shannon Rd Improvements LOCATION Franklin County JOB No. W-13-054 BORING/CORE No. B-012-0-12 DATE CORE OBTAINED
	Core C	ompo	osition	I					Comments/Remarks
Core Number B-012-0-12	Lift Thickness (in.) 1.25 1.50 2.00 3.25	Asi 404 ✓	bhalt 402 301 301 301	ncrete	Aggregate/Granular Base		ther		 Deterioration evident in the initial lift of the 402 asphalt Some tearing evident in the third lift of the 402 asphalt possibly due to overrolling durin gthe paving operation No base depth given
Total Pavement Thickness =	8.00	in.			l Asp kne	ohalt ss =	8.0	00	in. Total Concrete 0.00 in. Total Base 0.00 in. Thickness = 0.00 in. Thickness =
							3-		3-054 12-0-12

											Pavement	Core Data Su	ımmary
RESOURCE	6350 Presidential Gateway Columbus, Ohio 43231 Telephone: (614) 823-4949 Fax Number: (614) 823-4990)	PROJECT LOCATION JOB No. BORING/COF DATE CORE	Franklin Cou W-13-054 RE No.	Pike/Shannon R unty <u>B-015-0-12</u> 7/15/2013	Rd Improvements
										DATE CORE	OBTAINED	1/15/2013	
	Core C											nments/Remarks	
Core Number B-015-0-12	Lift Thickness (in.) 1.50 1.75 2.50 2.50		402 402	301	Concrete	Aggregate/Granular Base				- Core appea	ars to be in good	shape	
Total Pavement Thickness =	8.25	in.					phalt ss =	8.	.25		Concrete 0.0 kness =		tal Base 0.00 in. ckness =

						Pavement Core Data Summary		
RESOURCE	Co Telep	lumbu phone	us, C :: (61	Dhio 14) 8	Gateway 43231 23-4949 823-4990	PROJECT Winchester Pike/Shannon Rd Improvements LOCATION Franklin County JOB No. W-13-054 BORING/CORE No. B-016-0-12 DATE CORE OBTAINED 7/15/2013		
	Core Co	omposi	tion			Comments/Remarks		
Core Number B-016-0-12	Lift Thickness (in.) 1.25 1.00 1.50 1.50 3.00 4.00	Aspt +04 +05 	301	Concrete Agaregate/Granular Base		Some deterioration evident at the bottom of the 402 lift of asphalt as well as some vertical cracking		
Total Pavement Thickness =	8.25	in.		otal A	sphalt ess = 8.25	5 in. Total Concrete 0.00 in. Total Base 4.00 in. Thickness = 0.00 in. Thickness = 4.00 in.		
W-13-054 B-016-8-12								

GB1 SUBGRADE STABILIZATION SUMMARY

APPENDIX VI

	12.00	12/30/11	320 R 206 C L	obal Op R&R CS LS -S	otions No Opt No Opt	o ion o	R 0 0%	1a 3 6%	1b 1 2%	3 0	3a 0 25	2-4 2 4%	Classifi 2-5 2- 0 6 13	6 2-7 6 0		by Sa 4b 3 6%	imple 5 0	6a 10 21%	6b 8 17% 75%	7-5 0	7-6 4 8%	8a 0	Surface Class 8b 2-5 0 4b 0 5 0 7-5 0 0 0 0	N _{60L} <=	orings 5 25% 0 67% 0 0% 83%	50	urface)% 50%	Rig ER A 78 B C D
CBR Total		12		Depth	1		070	1	Avera			.,,,		.7		PI 13.2		Clay 15.3		M 16.7	M _{OPT}		7-6 1 8% GI 8a 0 5.57 8b 0	R	0%	19	Surface	E F G
PID Loca	tion	NA Winchester Pike	, Frank	klin Cou	unty, C	Dhio	1		Maxir Minim				41 3	18 4 3 2			52 7	35 1	84 8	31 3	25 6		14 R 0 0				24	Н
		Boring	· ·				Subg	rade		Stan	dard F	Penetr	ation		Physi	cal Ch	aracte			Mois	sture		ass Comments		blem		ercuts	Analysis
#	B #	Boring Location	n I	Depth	То	Cut Fill	Depth	То	n ₂	n ₃	Ν	Rig	N ₆₀ N ₆	OL LL	PL	PI	% Silt	% Clay	P 200	М	M _{OPT}	Ohio DOT	GI	w/ Class	w/ MN	UC Class	UC MN	
1	B-001	Sta. 98+28.61, 7.2 Winchester Pike		1.0 2.5	2.5 4.0	-1.0	0.0 1.5	1.5 3.0	4	5 7	9 14	А	12 18	NI 2			31 43	13 23	44 66	19 15	11 14	4a 6a	2		MN		12	UC 12" or CS 12"
			5	4.0 5.5	5.5 7.0		3.0 4.5	4.5 6.0	6 5	7	13 10		17	12	, ,,	12	10	20	00	18 20	14 14	6a 6a	8		MN		12	0012
2	B-002	Sta. 103+20.06, 8.2 Winchester Pike		1.0 2.5	2.5 4.0	-1.0	0.0 1.5	1.5 3.0	7	7 6	14 10	А	18 13	NI 3			24 49	1 35	25 84	10 22	6 16	1b 6a	0		MN		12	
		WINCHESTER FIRE		2.5 4.0 5.5	4.0 5.5 7.0		3.0 4.5	3.0 4.5 6.0	4 2 4	2	4		5 10	5	5 21	12	49	30	04	22 28 30	14 14	6a 6a	8		N		27 15	
3	B-003	Sta. 106+67.99, 7.7		1.0	2.5	-1.0	0.0	1.5	7	7	14	А	18	N			25	15	40	10	11	4a	1				10	
		Winchester Pike	e	2.5 4.0	4.0 5.5		1.5 3.0	3.0 4.5	8 12	13	17 25		22 32	2	9 17	12	31	1	32	8 11	10 10	2-6 2-6	0					
4	B-006	Sta. 30+97.39, 19.7	'Rt	5.5 0.0	7.0 1.5	0.0	4.5 0.0	6.0 1.5	19 2		32 5	A	<u>41</u> 6	18	1 17	14	35	13	48	8 18	10 14	2-6 6a	2 4 Fill		N		24	UC 24"
	D 000	Ebright Road		1.5	3.0	0.0	1.5	3.0	1	1	2	~	3	3				13	39	19	16	6b	3		Ν		40	No Chemical
				3.0 4.5	4.5 6.0		3.0 4.5	4.5 6.0	3 4		7 10		9 13	3						23 16	16 16	6b 6b	10 10		Ν		16	Alt N _{60L} < 4
5	B-007	Sta. 35+98.66, 23.7 Ebright Road	" Rt.	0.0 1.5	1.5 3.0	0.0	0.0 1.5	1.5 3.0	2	3 5	5 8	А	6 10	4			43 36	21 21	64 57	18 18	21 18	7-6 7-6	11 11		NN		24 15	UC 24" or CS 16"
		Eblight Houd		3.0	4.5		3.0	4.5	7	10	17		22			20	00	2.	01	12	18	7-6	14				10	0010
6	B-010	Sta. 41+11.77, 19.4	l' Rt.	4.5 0.0	6.0 1.5	0.0	4.5 0.0	6.0 1.5	10 2		24 5	А	31 6	6 2	3 15	13	30	23	53	13 19	18 14	7-6 6a	14 5		N		24	UC 24" or
		Ebright Road		1.5 3.0	3.0 4.5		1.5 3.0	3.0 4.5	4	5 6	9 10		12 13	2	9 13	16	25	26	51	16 17	16 16	6b 6b	5 10					CS 16"
	B 644			4.5	6.0		4.5	6.0	8	8	16		21	6					10	18	16	6b	10					
7	B-011	Sta. 113+59.57, 7.2 Winchester Pike		1.0 2.5	2.5 4.0	-1.0	0.0 1.5	1.5 3.0	7 5	9 7	16 12	A	21 16	N 2			9 40	1 23	10 63	8 19	6 13	1a 4a	0 Fill 6 Fill		м			
				4.0 5.5	5.5 5.9		3.0 4.5	4.5 4.9	5	27	32		41	16						9 3	10 10	2-6 2-6	2 <mark>Fill</mark> 2 Fill - Refusal					
8	B-012	Sta. 44+14.57, 23.7		0.0	1.5	0.0	0.0	1.5	3	3	6	А	8	N			40	18	58	16	11	4a	5		N		18	UC 36" or
		Shannon Road		1.5 3.0	3.0 4.5		1.5 3.0	3.0 4.5	4 5	4 5	8 10		10 13	2	5 17	8	52	14	66	18 17	12 10	4b 4b	6	4b 4b	N MN	36 36	15 12	CS 14"
9	B-013	Sta. 48+89.55, 17.2	2' Pt	4.5 0.0	6.0 1.5	0.0	4.5 0.0	6.0 1.5	7	8 5	15 9	A	19 12	8	1 15	16	22	5	27	20	10 10	4b 2-6	1 Fill	4b	М	36		
3	0013	Shannon Road		1.5	3.0	0.0	1.5	3.0	9	7	16	A	21	2				8	32	12	10	2-4	0 Fill					
				3.0 4.5	4.5 6.0		3.0 4.5	4.5 6.0	5 5	4 5	9 10		12 13	12						10 22	10 14	2-4 6a	0 Fill 8		MN		12	
10	B-014	Sta. 117+55.23, 6.5		1.0	2.5 4.0	-1.0	0.0	1.5 3.0	5		9	А	12 17	NI 2			9 37	1 23	10 60	7 18	6 16	1a	0					
		Winchester Pike	5	2.5 4.0	5.5		1.5 3.0	4.5	2	3	13 5		6		21	6	31	23	00	20	10	4a 4a	5		Ν		24	
11	B-015	Sta. 52+83.79, 21.8	3' Rt.	5.5 0.0	5.9 1.5	0.0	4.5	4.9 1.5	6 3	7	13 7	A	<u>17</u> 9	6	2 19	13	49	19	68	22 17	16 14	6b 6a	10 8 Fill		M		16	UC 16" or
		Shannon Road		1.5	3.0		1.5	3.0	4	7	11 6		14 8	N			42	25	67	16	11 10	4a	6		MN		12 18	CS 14"
				3.0 4.5	4.5 6.0		3.0 4.5	4.5 6.0	2 5	6	11		14	8						21 21	10	4a 4a	5		N MN		18 12	
12	B-016	Sta. 121+73.38, 7.0 Winchester Pike		1.0 2.5	2.5 4.0	-1.0	0.0 1.5	1.5 3.0	5 2	7 3	12 5	A	16 6	NI 3			7 38	1 24	8 62	11 31	6 25	1a 4a	0		Ν		24	
		Windlester Fike		4.0	5.5		3.0	4.5	1	2	3		4			5	00	27	52	23	10	4a	5		Ν		30	
				5.5	5.9		4.5	4.9	4	4	8		10	4						28	16	6b	10		Ν		15	

APPENDIX VII

DRIVEN Analysis Output

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: J:\GEOTECH\JRH\B4-12.DVN Project Name: Winchester Pike - B-004 Project Client: ms Consultants Computed By: JRH Project Manager: JPS

Project Date: 12/09/2013

PILE INFORMATION

Pile Type: Pipe Pile - Closed End Top of Pile: 10.00 ft Diameter of Pile: 12.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	18.00 ft
	- Driving/Restrike	18.00 ft
	- Ultimate:	18.00 ft
Ultimate Considerations:	- Local Scour:	15.00 ft
	- Long Term Scour:	15.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	3.00 ft	0.00%	110.00 pcf	28.0/28.0	Nordlund
2	Cohesive	10.00 ft	0.00%	120.00 pcf	2000.00 psf	T-79 Steel
3	Cohesionless	5.00 ft	0.00%	110.00 pcf	28.0/28.0	Nordlund
4	Cohesionless	14.00 ft	0.00%	115.00 pcf	30.0/30.0	Nordlund
5	Cohesive	20.00 ft	0.00%	125.00 pcf	3000.00 psf	T-79 Steel
6	Cohesionless	18.00 ft	0.00%	130.00 pcf	34.0/34.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 2.99 ft 3.01 ft 9.99 ft 10.00 ft 12.01 ft 12.99 ft 13.01 ft 17.99 ft 18.01 ft 27.01 ft 32.01 ft 32.01 ft 50.01 ft 51.99 ft 52.01 ft 61.01 ft 69.99 ft	Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	0.00 psf 0.00 psf N/A N/A N/A N/A N/A 1530.55 psf 1804.45 psf 2080.26 psf 2316.96 psf 2447.94 psf N/A N/A N/A N/A N/A N/A State of the set of the s	0.00 0.00 N/A N/A N/A N/A 16.46 16.46 17.64 17.64 17.64 17.64 N/A N/A N/A N/A N/A N/A DBEARING	N/A N/A 0.00 psf 0.00 psf 1165.00 psf 1188.45 psf 1199.88 psf N/A N/A N/A N/A N/A N/A 1164.17 psf 1300.00 psf 1300.00 psf 1300.00 psf 1300.00 psf N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 7.50 Kips 11.27 Kips 11.32 Kips 17.98 Kips 18.01 Kips 36.05 Kips 47.62 Kips 47.68 Kips 84.44 Kips 121.19 Kips 129.28 Kips 129.37 Kips 180.03 Kips 237.61 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 2.99 ft 3.01 ft 9.99 ft 10.00 ft 12.01 ft 12.99 ft 13.01 ft 17.99 ft 18.01 ft 27.01 ft 31.99 ft 32.01 ft 41.01 ft 50.01 ft 51.99 ft 61.01 ft 69.99 ft	Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	0.00 psf 0.00 psf N/A N/A N/A N/A N/A 1531.10 psf 2078.90 psf 2080.53 psf 2553.93 psf 2815.87 psf N/A N/A N/A N/A N/A N/A N/A S284.52 psf	22.80 22.80 N/A N/A N/A N/A 22.80 22.80 30.00 30.00 30.00 30.00 N/A N/A N/A N/A N/A N/A 55.60 55.60	10.46 Kips 10.46 Kips N/A N/A N/A N/A 10.46 Kips 10.46 Kips 10.46 Kips 10.46 Kips 10.46 Kips 10.46 Kips N/A N/A N/A N/A S7.74 Kips 57.74 Kips	0.00 Kips 0.00 Kips 0.00 Kips 14.14 Kips 14.14 Kips 14.14 Kips 14.14 Kips 10.46 Kips 10.46 Kips 10.46 Kips 10.46 Kips 21.21 Kips 21.21 Kips 21.21 Kips 57.74 Kips 57.74 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
2.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
3.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	14.14 Kips	14.14 Kips
12.01 ft	7.50 Kips	14.14 Kips	21.64 Kips
12.99 ft	11.27 Kips	14.14 Kips	25.41 Kips
13.01 ft 17.99 ft 18.01 ft 27.01 ft 31.99 ft 32.01 ft 41.01 ft 50.01 ft	11.32 Kips 17.98 Kips 18.01 Kips 36.05 Kips 47.62 Kips 47.68 Kips 84.44 Kips 121.19 Kips 129.28 Kips	10.46 Kips 10.46 Kips 10.46 Kips 10.46 Kips 10.46 Kips 21.21 Kips 21.21 Kips 21.21 Kips 21.21 Kips	21.78 Kips 28.44 Kips 28.47 Kips 46.51 Kips 58.08 Kips 68.88 Kips 105.64 Kips 142.40 Kips 150.49 Kips
52.01 ft	129.37 Kips	57.74 Kips	187.12 Kips
61.01 ft	180.03 Kips	57.74 Kips	237.78 Kips
69.99 ft	237.61 Kips	57.74 Kips	295.35 Kips

DRIVING - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 2.99 ft 3.01 ft 9.99 ft 10.00 ft 12.01 ft 12.99 ft 13.01 ft 17.99 ft 18.01 ft 27.01 ft 31.99 ft 32.01 ft 41.01 ft 50.01 ft 51.99 ft 61.01 ft 69.99 ft	Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	0.00 psf 0.00 psf N/A N/A N/A N/A N/A 1530.55 psf 1804.45 psf 2080.26 psf 2316.96 psf 2447.94 psf N/A N/A N/A N/A N/A N/A N/A Solution DRIVING - END	0.00 0.00 N/A N/A N/A N/A N/A 16.46 16.46 17.64 17.64 17.64 17.64 N/A N/A N/A N/A N/A N/A 19.99 19.99 19.99 DEARING	N/A N/A 0.00 psf 0.00 psf 1165.00 psf 1188.45 psf 1199.88 psf N/A N/A N/A N/A N/A N/A 1164.17 psf 1300.00 psf 1300.00 psf 1300.00 psf 1300.00 psf N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 7.50 Kips 11.27 Kips 11.32 Kips 17.98 Kips 18.01 Kips 36.05 Kips 47.62 Kips 47.68 Kips 84.44 Kips 121.19 Kips 129.28 Kips 129.37 Kips 180.03 Kips 237.61 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 2.99 ft 3.01 ft 9.99 ft 10.00 ft 12.01 ft 12.99 ft 13.01 ft 17.99 ft 18.01 ft 27.01 ft 32.01 ft 41.01 ft 50.01 ft 51.99 ft 52.01 ft 61.01 ft 69.99 ft	Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless	0.00 psf 0.00 psf N/A N/A N/A N/A N/A 1531.10 psf 2078.90 psf 2080.53 psf 2553.93 psf 2815.87 psf N/A N/A N/A N/A N/A N/A N/A S284.52 psf	22.80 22.80 N/A N/A N/A N/A 22.80 22.80 30.00 30.00 30.00 30.00 N/A N/A N/A N/A N/A S5.60 55.60 55.60	10.46 Kips 10.46 Kips N/A N/A N/A N/A 10.46 Kips 10.46 Kips 10.46 Kips 10.46 Kips 10.46 Kips 10.46 Kips N/A N/A N/A N/A S7.74 Kips 57.74 Kips	0.00 Kips 0.00 Kips 0.00 Kips 14.14 Kips 14.14 Kips 14.14 Kips 14.14 Kips 10.46 Kips 10.46 Kips 10.46 Kips 10.46 Kips 21.21 Kips 21.21 Kips 21.21 Kips 21.21 Kips 57.74 Kips 57.74 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
2.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
3.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	14.14 Kips	14.14 Kips
12.01 ft	7.50 Kips	14.14 Kips	21.64 Kips
12.99 ft	11.27 Kips	14.14 Kips	25.41 Kips
13.01 ft	11.32 Kips	10.46 Kips	21.78 Kips
17.99 ft	17.98 Kips	10.46 Kips	28.44 Kips
18.01 ft	18.01 Kips	10.46 Kips	28.47 Kips
27.01 ft	36.05 Kips	10.46 Kips	46.51 Kips
31.99 ft	47.62 Kips	10.46 Kips	58.08 Kips
32.01 ft	47.68 Kips	21.21 Kips	68.88 Kips
41.01 ft	84.44 Kips	21.21 Kips	105.64 Kips
50.01 ft	121.19 Kips	21.21 Kips	142.40 Kips
51.99 ft	129.28 Kips	21.21 Kips	150.49 Kips
52.01 ft	129.37 Kips	57.74 Kips	187.12 Kips
61.01 ft	180.03 Kips	57.74 Kips	237.78 Kips
69.99 ft	237.61 Kips	57.74 Kips	295.35 Kips

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
2.99 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
3.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
9.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
10.00 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
12.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
12.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
13.01 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
17.99 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
18.01 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
27.01 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
29.99 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
30.00 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
31.99 ft	Cohesionless	1013.54 psf	17.64	N/A	1.74 Kips
32.01 ft	Cohesive	N/A	N/A	1164.17 psf	1.79 Kips
41.01 ft	Cohesive	N/A	N/A	1300.00 psf	38.55 Kips
50.01 ft	Cohesive	N/A	N/A	1300.00 psf	75.31 Kips
51.99 ft	Cohesive	N/A	N/A	1300.00 psf	83.39 Kips
52.01 ft	Cohesionless	2318.74 psf	19.99	N/A	83.46 Kips
61.01 ft	Cohesionless	2622.94 psf	19.99	N/A	113.85 Kips
69.99 ft	Cohesionless	2926.46 psf	19.99	N/A	151.20 Kips

ULTIMATE - END BEARING

Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 2.99 ft 3.01 ft 9.99 ft 10.00 ft 12.01 ft 12.99 ft 13.01 ft 17.99 ft 18.01 ft 27.01 ft 29.99 ft 30.00 ft 31.99 ft 32.01 ft 41.01 ft 50.01 ft	Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive	0.00 psf 0.00 psf N/A N/A N/A N/A N/A 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf 961.20 psf 1065.87 psf N/A N/A N/A	0.00 0.00 N/A N/A N/A N/A N/A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 Kips 0.00 Kips N/A N/A N/A N/A N/A 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 10.46 Kips 10.46 Kips N/A N/A N/A	0.00 Kips 0.00 Kips 10.46 Kips 10.46 Kips 21.21 Kips 21.21 Kips 21.21 Kips 21.21 Kips
52.01 ft 61.01 ft 69.99 ft	Cohesionless Cohesionless Cohesionless	2319.08 psf 2927.48 psf 3534.52 psf	55.60 55.60 55.60	57.74 Kips 57.74 Kips 57.74 Kips	57.74 Kips 57.74 Kips 57.74 Kips
0010010		000 1.02 poi	00.00	0.11 1100	0111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
2.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
3.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	0.00 Kips	0.00 Kips
12.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
12.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
13.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
27.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
29.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
30.00 ft	0.00 Kips	10.46 Kips	10.46 Kips
31.99 ft	1.74 Kips	10.46 Kips	12.21 Kips
32.01 ft	1.79 Kips	21.21 Kips	23.00 Kips
41.01 ft	38.55 Kips	21.21 Kips	59.76 Kips
50.01 ft	75.31 Kips	21.21 Kips	96.51 Kips
51.99 ft	83.39 Kips	21.21 Kips	104.60 Kips
52.01 ft	83.46 Kips	57.74 Kips	141.21 Kips
61.01 ft	113.85 Kips	57.74 Kips	171.60 Kips
69.99 ft	151.20 Kips	57.74 Kips	208.94 Kips

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: J:\GEOTECH\JRH\B5-14.DVN Project Name: Winchester Pike - B-005 Project Client: ms Consultants Computed By: JRH Project Manager: JPS

Project Date: 12/09/2013

PILE INFORMATION

Pile Type: Pipe Pile - Closed End Top of Pile: 10.00 ft Diameter of Pile: 14.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	8.00 ft
	- Driving/Restrike	8.00 ft
	- Ultimate:	8.00 ft
Ultimate Considerations:	- Local Scour:	10.00 ft
	- Long Term Scour:	10.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	7.50 ft	0.00%	115.00 pcf	500.00 psf	T-79 Steel
2	Cohesionless	10.50 ft	0.00%	120.00 pcf	32.0/32.0	Nordlund
3	Cohesive	24.00 ft	0.00%	125.00 pcf	2500.00 psf	T-79 Steel
4	Cohesionless	28.00 ft	0.00%	130.00 pcf	34.0/34.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 7.49 ft 7.51 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 17.01 ft 17.01 ft 17.99 ft 18.01 ft 27.01 ft 36.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 69.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A 0.00 psf 0.00 psf 0.00 psf 1037.70 psf 1239.59 psf 1267.81 psf N/A N/A N/A N/A N/A N/A 3001.24 psf 3305.44 psf 3609.64 psf 3913.84 psf 3946.96 psf RESTRIKE - EN	N/A N/A 0.00 0.00 0.00 21.33 21.33 21.33 21.33 N/A N/A N/A N/A N/A N/A N/A N/A 22.66 22.66 22.66 22.66 22.66 22.66 22.66 D BEARING	0.00 psf 0.00 psf N/A N/A N/A N/A N/A N/A 1095.15 psf 1230.15 psf 1365.15 psf 1454.85 psf N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 13.64 Kips 15.90 Kips 15.97 Kips 56.55 Kips 106.04 Kips 143.85 Kips 143.97 Kips 200.66 Kips 267.77 Kips 345.32 Kips 354.40 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.49 ft 7.51 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 17.01 ft 17.99 ft 18.01 ft 27.01 ft 36.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 69.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A 0.00 psf 0.00 psf 0.00 psf 1037.70 psf 1441.48 psf 1497.92 psf N/A N/A N/A N/A N/A N/A 3001.58 psf 3609.98 psf 4218.38 psf 4826.78 psf 4893.02 psf	N/A N/A 40.40 40.40 40.40 40.40 40.40 40.40 40.40 N/A N/A N/A N/A N/A S5.60 55.60 55.60 55.60 55.60	N/A N/A 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips N/A N/A N/A N/A N/A N/A 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 28.04 Kips 35.28 Kips 35.28 Kips 24.05 Kips 24.05 Kips 24.05 Kips 24.05 Kips 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.51 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	28.04 Kips	28.04 Kips
17.01 ft	13.64 Kips	35.28 Kips	48.92 Kips
17.99 ft	15.90 Kips	35.28 Kips	51.18 Kips
18.01 ft	15.97 Kips	24.05 Kips	40.02 Kips
27.01 ft	56.55 Kips	24.05 Kips	80.60 Kips
36.01 ft	106.04 Kips	24.05 Kips	130.09 Kips
41.99 ft	143.85 Kips	24.05 Kips	167.90 Kips
42.01 ft	143.97 Kips	78.59 Kips	222.57 Kips
51.01 ft	200.66 Kips	78.59 Kips	279.25 Kips
60.01 ft	267.77 Kips	78.59 Kips	346.37 Kips
69.01 ft	345.32 Kips	78.59 Kips	423.92 Kips
69.99 ft	354.40 Kips	78.59 Kips	432.99 Kips

DRIVING - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 7.49 ft 7.51 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 17.01 ft 17.01 ft 18.01 ft 27.01 ft 36.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 69.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A 0.00 psf 0.00 psf 0.00 psf 1037.70 psf 1239.59 psf 1267.81 psf N/A N/A N/A N/A N/A N/A 3001.24 psf 3305.44 psf 3609.64 psf 3913.84 psf 3946.96 psf DRIVING - END	N/A N/A 0.00 0.00 0.00 21.33 21.33 21.33 21.33 N/A N/A N/A N/A N/A N/A N/A N/A 22.66 22.66 22.66 22.66 22.66 22.66 22.66 22.66 22.66	0.00 psf 0.00 psf N/A N/A N/A N/A N/A N/A 1095.15 psf 1230.15 psf 1365.15 psf 1454.85 psf N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 13.64 Kips 15.90 Kips 15.97 Kips 56.55 Kips 106.04 Kips 143.85 Kips 143.97 Kips 200.66 Kips 267.77 Kips 345.32 Kips 354.40 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.49 ft 7.51 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 17.01 ft 17.99 ft 18.01 ft 27.01 ft 36.01 ft 41.99 ft 42.01 ft 51.01 ft 69.01 ft 69.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A 0.00 psf 0.00 psf 0.00 psf 1037.70 psf 1441.48 psf 1497.92 psf N/A N/A N/A N/A N/A N/A N/A 3001.58 psf 3609.98 psf 4218.38 psf 4826.78 psf 4893.02 psf	N/A N/A 40.40 40.40 40.40 40.40 40.40 40.40 40.40 N/A N/A N/A N/A N/A S5.60 55.60 55.60 55.60 55.60	N/A N/A 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips N/A N/A N/A N/A N/A N/A 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 28.04 Kips 35.28 Kips 35.28 Kips 24.05 Kips 24.05 Kips 24.05 Kips 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.51 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	28.04 Kips	28.04 Kips
17.01 ft	13.64 Kips	35.28 Kips	48.92 Kips
17.99 ft	15.90 Kips	35.28 Kips	51.18 Kips
18.01 ft	15.97 Kips	24.05 Kips	40.02 Kips
27.01 ft	56.55 Kips	24.05 Kips	80.60 Kips
36.01 ft	106.04 Kips	24.05 Kips	130.09 Kips
41.99 ft	143.85 Kips	24.05 Kips	167.90 Kips
42.01 ft	143.97 Kips	78.59 Kips	222.57 Kips
51.01 ft	200.66 Kips	78.59 Kips	279.25 Kips
60.01 ft	267.77 Kips	78.59 Kips	346.37 Kips
69.01 ft	345.32 Kips	78.59 Kips	423.92 Kips
69.99 ft	354.40 Kips	78.59 Kips	432.99 Kips

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 7.49 ft 7.51 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 17.01 ft 17.99 ft 18.01 ft 19.99 ft 20.00 ft 27.01 ft 36.01 ft 41.99 ft 42.01 ft 51.01 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 psf 0.00 psf N/A N/A N/A N/A N/A N/A N/A 0.00 psf 0.00 psf 0.00 psf 1230.15 psf 1365.15 psf 1454.85 psf N/A N/A	0.00 Kips 0.00 Kips 31.61 Kips 31.61 Kips 117.26 Kips 117.36 Kips 156.25 Kips
60.01 ft 69.01 ft 69.99 ft	Cohesionless Cohesionless Cohesionless	2571.94 psf 2876.14 psf 2909.26 psf	22.66 22.66 22.66	N/A N/A N/A	205.57 Kips 265.33 Kips 272.47 Kips

ULTIMATE - END BEARING

Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.49 ft 7.51 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 17.01 ft 17.99 ft 18.01 ft 19.99 ft 20.00 ft 27.01 ft 36.01 ft 41.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive	N/A N/A 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A N/A N/A	N/A N/A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N/A N/A N/A N/A N/A N/A N/A	N/A N/A 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 24.05 Kips 24.05 Kips 24.05 Kips 24.05 Kips
42.01 ft 51.01 ft 60.01 ft 69.01 ft 69.99 ft	Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	1963.88 psf 2572.28 psf 3180.68 psf 3789.08 psf 3855.32 psf	55.60 55.60 55.60 55.60 55.60	78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips	77.37 Kips 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.51 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
19.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
20.00 ft	0.00 Kips	24.05 Kips	24.05 Kips
27.01 ft	31.61 Kips	24.05 Kips	55.66 Kips
36.01 ft	80.11 Kips	24.05 Kips	104.16 Kips
41.99 ft	117.26 Kips	24.05 Kips	141.31 Kips
42.01 ft	117.36 Kips	77.37 Kips	194.73 Kips
51.01 ft	156.25 Kips	78.59 Kips	234.84 Kips
60.01 ft	205.57 Kips	78.59 Kips	284.17 Kips
69.01 ft	265.33 Kips	78.59 Kips	343.92 Kips
69.99 ft	272.47 Kips	78.59 Kips	351.06 Kips

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: J:\GEOTECH\JRH\B8-14.DVN Project Name: Winchester Pike - B-008 Project Client: ms Consultants Computed By: JRH Project Manager: JPS

Project Date: 12/09/2013

PILE INFORMATION

Pile Type: Pipe Pile - Closed End Top of Pile: 10.00 ft Diameter of Pile: 14.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	12.00 ft
	- Driving/Restrike	12.00 ft
	- Ultimate:	12.00 ft
Ultimate Considerations:	- Local Scour:	10.00 ft
	- Long Term Scour:	10.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	5.50 ft	0.00%	120.00 pcf	500.00 psf	T-79 Steel
2	Cohesionless	9.50 ft	0.00%	120.00 pcf	32.0/32.0	Nordlund
3	Cohesive	25.50 ft	0.00%	125.00 pcf	2500.00 psf	T-79 Steel
4	Cohesionless	29.50 ft	0.00%	130.00 pcf	34.0/34.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 5.49 ft 5.51 ft 9.99 ft 10.00 ft 11.99 ft 12.01 ft 14.99 ft 15.01 ft 24.01 ft 33.01 ft 40.49 ft 40.51 ft 58.51 ft 67.51 ft 69.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A 0.00 psf 0.00 psf 1200.00 psf 1319.40 psf 1440.29 psf 1526.11 psf N/A N/A N/A N/A N/A 3209.44 psf 3513.64 psf 3817.84 psf 4122.04 psf 4205.86 psf RESTRIKE - EN	N/A N/A 0.00 21.33 21.33 21.33 21.33 21.33 N/A N/A N/A N/A N/A 22.66 22.66 22.66 22.66 22.66 22.66 22.66 22.66	0.00 psf 0.00 psf N/A N/A N/A N/A N/A N/A 1050.15 psf 1185.15 psf 1320.15 psf 1432.35 psf N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 4.12 Kips 4.12 Kips 4.17 Kips 11.31 Kips 11.37 Kips 50.47 Kips 98.48 Kips 145.15 Kips 145.28 Kips 205.53 Kips 276.22 Kips 357.34 Kips 381.53 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 5.49 ft 5.51 ft 9.99 ft 10.00 ft 12.01 ft 14.99 ft 15.01 ft 24.01 ft 33.01 ft 40.49 ft 40.51 ft 49.51 ft 58.51 ft 67.51 ft 69.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A 0.00 psf 1200.00 psf 1438.80 psf 1440.58 psf 1612.22 psf N/A N/A N/A N/A N/A N/A 3209.78 psf 3818.18 psf 4426.58 psf 5034.98 psf 5202.62 psf	N/A N/A 40.40 40.40 40.40 40.40 40.40 40.40 N/A N/A N/A N/A N/A S5.60 55.60 55.60 55.60 55.60	N/A N/A 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips N/A N/A N/A N/A N/A N/A 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips	0.00 Kips 0.00 Kips 0.00 Kips 32.42 Kips 35.28 Kips 35.28 Kips 35.28 Kips 24.05 Kips 24.05 Kips 24.05 Kips 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.51 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	32.42 Kips	32.42 Kips
11.99 ft	4.12 Kips	35.28 Kips	39.40 Kips
12.01 ft	4.17 Kips	35.28 Kips	39.44 Kips
14.99 ft	11.31 Kips	35.28 Kips	46.59 Kips
15.01 ft	11.37 Kips	24.05 Kips	35.42 Kips
24.01 ft	50.47 Kips	24.05 Kips	74.52 Kips
33.01 ft	98.48 Kips	24.05 Kips	122.53 Kips
40.49 ft	145.15 Kips	24.05 Kips	169.20 Kips
40.51 ft	145.28 Kips	78.59 Kips	223.87 Kips
49.51 ft	205.53 Kips	78.59 Kips	284.13 Kips
58.51 ft	276.22 Kips	78.59 Kips	354.81 Kips
67.51 ft	357.34 Kips	78.59 Kips	435.93 Kips
69.99 ft	381.53 Kips	78.59 Kips	460.12 Kips

DRIVING - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 5.49 ft 5.51 ft 9.99 ft 10.00 ft 11.99 ft 12.01 ft 14.99 ft 15.01 ft 24.01 ft 33.01 ft 40.49 ft 40.51 ft 58.51 ft 67.51 ft 69.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A 0.00 psf 0.00 psf 1200.00 psf 1319.40 psf 1440.29 psf 1526.11 psf N/A N/A N/A N/A N/A 3209.44 psf 3513.64 psf 3817.84 psf 4122.04 psf 4205.86 psf	N/A N/A 0.00 0.00 21.33 21.33 21.33 21.33 21.33 N/A N/A N/A N/A N/A 22.66 22.66 22.66 22.66 22.66 22.66 22.66	0.00 psf 0.00 psf N/A N/A N/A N/A N/A 1050.15 psf 1185.15 psf 1320.15 psf 1432.35 psf N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 4.12 Kips 4.12 Kips 4.17 Kips 11.31 Kips 11.37 Kips 50.47 Kips 98.48 Kips 145.15 Kips 145.28 Kips 205.53 Kips 276.22 Kips 357.34 Kips 381.53 Kips
		DRIVING - END			·
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 5.49 ft 5.51 ft 9.99 ft 10.00 ft 11.99 ft 12.01 ft 14.99 ft 15.01 ft 24.01 ft 33.01 ft 40.49 ft 40.51 ft 58.51 ft 67.51 ft 69.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A 0.00 psf 1200.00 psf 1438.80 psf 1440.58 psf 1612.22 psf N/A N/A N/A N/A N/A N/A 3209.78 psf 3818.18 psf 4426.58 psf 5034.98 psf 5202.62 psf	N/A N/A 40.40 40.40 40.40 40.40 40.40 40.40 N/A N/A N/A N/A S5.60 55.60 55.60 55.60 55.60	N/A N/A 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips 35.28 Kips N/A N/A N/A N/A N/A N/A 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips	0.00 Kips 0.00 Kips 0.00 Kips 32.42 Kips 35.28 Kips 35.28 Kips 35.28 Kips 24.05 Kips 24.05 Kips 24.05 Kips 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.49 ft	0.00 Kips	0.00 Kips	0.00 Kips
5.51 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	32.42 Kips	32.42 Kips
11.99 ft	4.12 Kips	35.28 Kips	39.40 Kips
12.01 ft	4.17 Kips	35.28 Kips	39.44 Kips
14.99 ft	11.31 Kips	35.28 Kips	46.59 Kips
15.01 ft	11.37 Kips	24.05 Kips	35.42 Kips
24.01 ft	50.47 Kips	24.05 Kips	74.52 Kips
33.01 ft	98.48 Kips	24.05 Kips	122.53 Kips
40.49 ft	145.15 Kips	24.05 Kips	169.20 Kips
40.51 ft	145.28 Kips	78.59 Kips	223.87 Kips
49.51 ft	205.53 Kips	78.59 Kips	284.13 Kips
58.51 ft	276.22 Kips	78.59 Kips	354.81 Kips
67.51 ft	357.34 Kips	78.59 Kips	435.93 Kips
69.99 ft	381.53 Kips	78.59 Kips	460.12 Kips

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 5.49 ft 5.51 ft 9.99 ft 10.00 ft 11.99 ft 12.01 ft 14.99 ft 15.01 ft 24.01 ft 24.01 ft 33.01 ft 40.49 ft 40.51 ft 58.51 ft 67.51 ft 69.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A 0.00 0.00 0.00 0.00 0.00 0.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 psf 0.00 psf N/A N/A N/A N/A N/A N/A 0.00 psf 0.00 psf 0.00 psf 1185.15 psf 1320.15 psf 1432.35 psf 1432.35 psf N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 17.42 Kips 62.95 Kips 107.57 Kips 107.67 Kips 147.35 Kips 197.46 Kips 258.00 Kips 276.52 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 5.49 ft 5.51 ft 9.99 ft 10.00 ft 11.99 ft 12.01 ft 14.99 ft 15.01 ft 20.00 ft 24.01 ft 33.01 ft 40.49 ft 40.51 ft 58.51 ft 67.51 ft 69.99 ft	Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A 0.00 0.00 0.00 0.00 0.00 0.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 24.05 Kips 24.05 Kips 24.05 Kips 24.05 Kips 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
Depth 0.01 ft 5.49 ft 5.51 ft 9.99 ft 10.00 ft 11.99 ft 12.01 ft 14.99 ft 15.01 ft 19.99 ft 20.00 ft 24.01 ft 33.01 ft	Skin Friction 0.00 Kips 0.00 Kips 17.42 Kips 62.95 Kips	End Bearing 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 24.05 Kips 24.05 Kips 24.05 Kips	Total Capacity 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 24.05 Kips 41.47 Kips 87.00 Kips
40.49 ft 40.51 ft 49.51 ft 58.51 ft 67.51 ft	107.57 Kips 107.67 Kips 147.35 Kips 197.46 Kips 258.00 Kips	24.05 Kips 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips 78.59 Kips	131.62 Kips 186.26 Kips 225.94 Kips 276.05 Kips 336.60 Kips
69.99 ft	276.52 Kips	78.59 Kips	355.11 Kips

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: J:\GEOTECH\JRH\B9-12.DVN Project Name: Winchester Pike - B-009 Project Client: ms Consultants Computed By: JRH Project Manager: JPS

Project Date: 12/09/2013

PILE INFORMATION

Pile Type: Pipe Pile - Closed End Top of Pile: 10.00 ft Diameter of Pile: 12.00 in

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	18.00 ft
	- Driving/Restrike	18.00 ft
	- Ultimate:	18.00 ft
Ultimate Considerations:	- Local Scour:	15.00 ft
	- Long Term Scour:	15.00 ft
	- Soft Soil:	0.00 ft

ULTIMATE PROFILE

Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesionless	8.00 ft	0.00%	120.00 pcf	32.0/32.0	Nordlund
2	Cohesive	6.00 ft	0.00%	115.00 pcf	500.00 psf	T-79 Steel
3	Cohesionless	13.00 ft	0.00%	120.00 pcf	32.0/32.0	Nordlund
4	Cohesive	5.00 ft	0.00%	125.00 pcf	4500.00 psf	T-79 Steel
5	Cohesionless	15.00 ft	0.00%	120.00 pcf	32.0/32.0	Nordlund
6	Cohesionless	23.00 ft	0.00%	130.00 pcf	34.0/34.0	Nordlund

RESTRIKE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 13.99 ft 14.01 ft 17.99 ft 18.01 ft 27.01 ft 31.99 ft 32.01 ft 41.01 ft 46.99 ft 47.01 ft 56.01 ft 69.99 ft	Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	0.00 psf 0.00 psf N/A N/A N/A N/A 1650.60 psf 1889.40 psf 2130.29 psf 2388.91 psf N/A N/A 2961.69 psf 3220.89 psf 3293.11 psf 3825.74 psf 4129.94 psf 4434.14 psf 4602.46 psf RESTRIKE - ENI	0.00 0.00 N/A N/A N/A N/A 18.82 18.82 18.82 18.82 18.82 N/A N/A N/A 18.82 18.82 18.82 18.82 18.82 19.99 19.99 19.99 DBEARING	N/A N/A 0.00 psf 0.00 psf 410.00 psf 421.97 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 5.29 Kips 5.32 Kips 13.39 Kips 13.44 Kips 36.47 Kips 36.53 Kips 54.20 Kips 54.27 Kips 85.38 Kips 108.82 Kips 108.91 Kips 156.76 Kips 211.65 Kips 245.06 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 13.99 ft 14.01 ft 17.99 ft 18.01 ft 26.99 ft 27.01 ft 32.01 ft 41.01 ft 46.99 ft 47.01 ft 56.01 ft 69.99 ft	Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	0.00 psf 0.00 psf N/A N/A N/A N/A 1651.20 psf 2128.80 psf 2130.58 psf 2647.82 psf N/A N/A N/A 2961.98 psf 3824.82 psf 3826.08 psf 3826.08 psf 4434.48 psf 5042.88 psf 5379.52 psf	40.40 40.40 N/A N/A N/A 40.40 40.40 40.40 40.40 40.40 N/A N/A 40.40 40.40 40.40 55.60 55.60 55.60 55.60	25.92 Kips 25.92 Kips N/A N/A N/A 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 57.74 Kips 57.74 Kips 57.74 Kips	0.00 Kips 0.00 Kips 0.00 Kips 3.53 Kips 3.53 Kips 25.92 Kips 25.92 Kips 25.92 Kips 31.81 Kips 31.81 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 57.74 Kips 57.74 Kips 57.74 Kips

RESTRIKE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	3.53 Kips	3.53 Kips
13.99 ft	5.29 Kips	3.53 Kips	8.82 Kips
14.01 ft	5.32 Kips	25.92 Kips	31.24 Kips
17.99 ft	13.39 Kips	25.92 Kips	39.31 Kips
18.01 ft	13.44 Kips	25.92 Kips	39.36 Kips
26.99 ft	36.47 Kips	25.92 Kips	62.38 Kips
27.01 ft	36.53 Kips	31.81 Kips	68.34 Kips
31.99 ft	54.20 Kips	31.81 Kips	86.00 Kips
32.01 ft	54.27 Kips	25.92 Kips	80.18 Kips
41.01 ft	85.38 Kips	25.92 Kips	111.30 Kips
46.99 ft	108.82 Kips	25.92 Kips	134.74 Kips
47.01 ft	108.91 Kips	57.74 Kips	166.66 Kips
56.01 ft	156.76 Kips	57.74 Kips	214.50 Kips
65.01 ft	211.65 Kips	57.74 Kips	269.40 Kips
69.99 ft	245.06 Kips	57.74 Kips	302.80 Kips

DRIVING - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 13.99 ft 14.01 ft 17.99 ft 18.01 ft 27.01 ft 31.99 ft 32.01 ft 41.01 ft 46.99 ft 47.01 ft 56.01 ft 69.99 ft	Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	0.00 psf 0.00 psf N/A N/A N/A N/A 1650.60 psf 1889.40 psf 2130.29 psf 2388.91 psf N/A N/A 2961.69 psf 3220.89 psf 3393.11 psf 3825.74 psf 4129.94 psf 4434.14 psf 4602.46 psf DRIVING - END	0.00 0.00 N/A N/A N/A 18.82 18.82 18.82 18.82 18.82 18.82 18.82 18.82 18.82 18.82 18.82 19.99 19.99 19.99 19.99 BEARING	N/A N/A 0.00 psf 0.00 psf 410.00 psf 421.97 psf N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips 5.29 Kips 5.32 Kips 13.39 Kips 13.44 Kips 36.47 Kips 36.53 Kips 54.20 Kips 54.27 Kips 85.38 Kips 108.82 Kips 108.91 Kips 156.76 Kips 211.65 Kips 245.06 Kips
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 13.99 ft 14.01 ft 17.99 ft 18.01 ft 26.99 ft 27.01 ft 32.01 ft 41.01 ft 46.99 ft 47.01 ft 56.01 ft 69.99 ft	Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	0.00 psf 0.00 psf N/A N/A N/A N/A 1651.20 psf 2128.80 psf 2130.58 psf 2647.82 psf N/A N/A 2961.98 psf 3480.38 psf 3824.82 psf 3826.08 psf 4434.48 psf 5042.88 psf 5379.52 psf	40.40 40.40 N/A N/A N/A 40.40 40.40 40.40 40.40 40.40 N/A N/A 40.40 40.40 40.40 55.60 55.60 55.60 55.60	25.92 Kips 25.92 Kips N/A N/A N/A 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 57.74 Kips 57.74 Kips 57.74 Kips	0.00 Kips 0.00 Kips 0.00 Kips 3.53 Kips 3.53 Kips 25.92 Kips 25.92 Kips 25.92 Kips 31.81 Kips 31.81 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 25.92 Kips 57.74 Kips 57.74 Kips 57.74 Kips

DRIVING - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	3.53 Kips	3.53 Kips
13.99 ft	5.29 Kips	3.53 Kips	8.82 Kips
14.01 ft	5.32 Kips	25.92 Kips	31.24 Kips
17.99 ft	13.39 Kips	25.92 Kips	39.31 Kips
18.01 ft	13.44 Kips	25.92 Kips	39.36 Kips
26.99 ft	36.47 Kips	25.92 Kips	62.38 Kips
27.01 ft	36.53 Kips	31.81 Kips	68.34 Kips
31.99 ft	54.20 Kips	31.81 Kips	86.00 Kips
32.01 ft	54.27 Kips	25.92 Kips	80.18 Kips
41.01 ft	85.38 Kips	25.92 Kips	111.30 Kips
46.99 ft	108.82 Kips	25.92 Kips	134.74 Kips
47.01 ft	108.91 Kips	57.74 Kips	166.66 Kips
56.01 ft	156.76 Kips	57.74 Kips	214.50 Kips
65.01 ft	211.65 Kips	57.74 Kips	269.40 Kips
69.99 ft	245.06 Kips	57.74 Kips	302.80 Kips

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
7.99 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
8.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
9.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
10.00 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
13.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
14.01 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
17.99 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
18.01 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
26.99 ft	Cohesionless	0.00 psf	0.00	N/A	0.00 Kips
27.01 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
29.99 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
30.00 ft	Cohesive	N/A	N/A	0.00 psf	0.00 Kips
31.99 ft	Cohesive	N/A	N/A	1129.17 psf	7.06 Kips
32.01 ft	Cohesionless	1191.69 psf	18.82	N/A	7.11 Kips
41.01 ft	Cohesionless	1450.89 psf	18.82	N/A	21.13 Kips
46.99 ft	Cohesionless	1623.11 psf	18.82	N/A	33.21 Kips
47.01 ft	Cohesionless	2055.74 psf	19.99	N/A	33.26 Kips
56.01 ft	Cohesionless	2359.94 psf	19.99	N/A	60.60 Kips
65.01 ft	Cohesionless	2664.14 psf	19.99	N/A	94.99 Kips
69.99 ft	Cohesionless	2832.46 psf	19.99	N/A	117.05 Kips

ULTIMATE - END BEARING

Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 ft 7.99 ft 8.01 ft 9.99 ft 10.00 ft 13.99 ft 14.01 ft 17.99 ft 18.01 ft 26.99 ft 27.01 ft 29.99 ft 30.00 ft 31.99 ft 32.01 ft 41.01 ft	Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless Cohesive Cohesive Cohesive Cohesive Cohesive Cohesive	0.00 psf 0.00 psf N/A N/A N/A N/A 0.00 psf 0.00 psf 0.00 psf 0.00 psf 0.00 psf N/A N/A N/A N/A N/A N/A N/A 1191.98 psf 1710.38 psf	0.00 0.00 N/A N/A N/A N/A 0.00 0.00 0.00 0.00 0.00 0.00 N/A N/A N/A N/A N/A N/A 0.40 40.40	0.00 Kips 0.00 Kips N/A N/A N/A N/A 0.00 Kips 0.00 Kips 0.00 Kips 0.00 Kips N/A N/A N/A N/A N/A N/A N/A S.92 Kips 25.92 Kips	0.00 Kips 0.00 Kips 31.81 Kips 31.81 Kips 23.66 Kips 25.92 Kips
46.99 ft 47.01 ft 56.01 ft 65.01 ft 69.99 ft	Cohesionless Cohesionless Cohesionless Cohesionless Cohesionless	2054.82 psf 2056.08 psf 2664.48 psf 3272.88 psf 3609.52 psf	40.40 55.60 55.60 55.60 55.60	25.92 Kips 57.74 Kips 57.74 Kips 57.74 Kips 57.74 Kips	25.92 Kips 57.74 Kips 57.74 Kips 57.74 Kips 57.74 Kips 57.74 Kips

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
7.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
8.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
9.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
10.00 ft	0.00 Kips	0.00 Kips	0.00 Kips
13.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
14.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
17.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
18.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
26.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
27.01 ft	0.00 Kips	0.00 Kips	0.00 Kips
29.99 ft	0.00 Kips	0.00 Kips	0.00 Kips
30.00 ft	0.00 Kips	31.81 Kips	31.81 Kips
31.99 ft	7.06 Kips	31.81 Kips	38.87 Kips
32.01 ft	7.11 Kips	23.66 Kips	30.77 Kips
41.01 ft	21.13 Kips	25.92 Kips	47.04 Kips
46.99 ft	33.21 Kips	25.92 Kips	59.13 Kips
47.01 ft	33.26 Kips	57.74 Kips	91.00 Kips
56.01 ft	60.60 Kips	57.74 Kips	118.34 Kips
65.01 ft	94.99 Kips	57.74 Kips	152.73 Kips
69.99 ft	117.05 Kips	57.74 Kips	174.79 Kips