

FINAL REPORT OF SUBGRADE EXPLORATION

NORTON ROAD AND JOHNSON ROAD INTERSECTION IMPROVEMENTS

Franklin County, Ohio PID 102047, SJN 467744

Prepared For:

ORCHARD, HILTZ & MCCLIMENT, INC. 580 NORTH FOURTH STREET, SUITE 610, COLUMBUS, OHIO 43215

DLZ Job No. 1721-3001.00

August 8, 2017

6121 Huntley Road, Columbus, OH 43229 OFFICE 614.888.0040 ONLINE WWW.DLZ.COM

EXECUTIVE SUMMARY

As part of the Norton Road and Johnson Road intersection improvement (FRA-CR3-06.79, PID 102047) a subgrade geotechnical exploration was performed along the proposed alignments in Grove City, Franklin County, Ohio. The project reportedly consists of replacing the existing two-way stop crossroad with a westward shifted roundabout from the existing intersection location with approach lanes offset from existing to accommodate.

A total of eleven (11) borings (B-001-0-17 through B-011-0-17) were drilled to depths ranging from 8.5 to 10.0 feet below existing grade for this geotechnical exploration performed on February 28 and March 2, 2017. Samples of the subsurface materials were obtained for classification, general index testing and strength testing. Fill and possible fill was encountered in six of the borings to depths of between 1.5 and 4.5 feet beneath the existing ground surface. Fill or possible fill consisted of generally very soft to stiff, cohesive, fine-grained soils. Natural soils were encountered underlying surficial materials generally consisting of soft to very stiff, cohesive, fine-grained soil. Samples within the natural overburden soils occasionally contained root hairs, iron oxide stains, and rock fragments. Sulfate content within the upper two soil samples of each boring ranged from 0 to 200 parts per million (ppm). Loss of Ignition (LOI) testing was performed on three (3) samples identified as containing organic materials and ranged from 4.34 to 15.29 percent, corresponding to descriptions of moderately to highly organic (ODOT SGE Table 600-7). Bedrock was not encountered.

Subgrade analyses were performed in accordance with ODOT Geotechnical Bulletin No. 1 (GB-1). Based on the conditions encountered in the borings, the soils at the site are generally conducive to support of the proposed paved roadway. However, the GB-1 analysis identified numerous areas that will require subgrade stabilization. Unsuitable soils were not encountered along the proposed alignments. Based on the results of the GB-1 analyses, a CBR value of 5 is recommended for design of the proposed roadway.

Considering the high soil moisture contents encountered in the majority of the borings performed for this exploration, installation of a drainage system including construction underdrains and adequate ditches are recommended as a practical solution to promote drainage of the subgrade and improve subgrade stability. Global subgrade stabilization is also recommended to increase life time of the roadway. Table A summarizes the recommended global stabilization alternatives, limits and minimum depths.

Subgrade Stabilization Alternatives	Project Limits	Minimum Depths
Undercut and Replace with Item 204 Granular Material	Full Length	18 Inches
Undercut and Replace with Item 204 Granular Material and SS CMS 861 Geogrid	Full Length	12 Inches
Chemical Stabilized Subgrade Item 206 with Lime	Full Length	12 inches

Table A: Recommended Global Subgrade Stabilization Alternatives

SUBGRADE EXPLORATION NORTON ROAD AND JOHNSON ROAD INTERSECTION IMPROVEMENTS FINAL Submittal (8/2/17)

TABLE OF CONTENTS

1.0	INTRO	DUCTION	.1
2.0	GEOL	OGY AND OBSERVATIONS OF THE PROJECT	.2
3.0	EXPLO	DRATION	.3
3	.1 Field E	xploration	.3
3	.2 Labora	tory Testing Program	.3
4.0		NGS	
4	.1 Overbu	ırden Conditions	.5
4	.2 Bedroc	k Conditions	.6
4	.3 Ground	dwater Conditions	.6
5.0	General I	nformation	.7
5	.1 Genera	Il Embankment Construction and Subgrade Preparation	.7
5	.2 Pavem	ent Subgrade Recommendations	.7
	5.2.1	Unsuitable subgrade	.9
6.0	CLOSI	NG REMARKS1	10

APPENDIX

General Information-Drilling Procedures and Logs of Borings Legend-Boring Log Terminology Soil Profile Sheets (6) Boring Logs (11) Laboratory Testing Results ODOT GB-1 Spreadsheets

1.0 INTRODUCTION

This report presents the findings of the geotechnical exploration performed for the intersection improvement (FRA-CR3-06.79, PID 102047, SJN 467744) located at County Road 3 (Norton Road) and Township Road 293 (Johnson Road) in Grove City, Franklin County, Ohio. The project limits are approximately from straight line mile (SLM) 6.6 to SLM 7.0 on Norton Road (primary roadway) and from approximately SLM 1.6 to SLM 2.0 on Johnson Road. The project reportedly consists of replacing the existing two-way stop crossroad with a roundabout. Preliminary design information calls for a westward shift of the roundabout from the existing intersection location with approach lanes offset from existing to accommodate.

The purpose of this exploration was to: 1) determine the subsurface conditions to the depths of the borings, 2) evaluate the engineering characteristics of the subsurface materials, and 3) provide information to assist in the design and construction of the proposed intersection.

The exploration presented in this report was performed in accordance with DLZ Ohio, Inc.'s (DLZ) proposal with Orchard, Hiltz & McCliment, Inc. (OHM) dated October 6, 2016. This exploration was also performed in general accordance with the Ohio Department of Transportation (ODOT) Specifications for Geotechnical Exploration (SGE) dated July 2016.

The geotechnical engineer has planned and supervised the performance of the geotechnical engineering services, considered the findings, and prepared this report in accordance with generally accepted geotechnical engineering practices. No other warranties, either expressed or implied, are made as to the professional advice included in this report.

2.0 GEOLOGY AND OBSERVATIONS OF THE PROJECT

The project site lays within the Darby Plain, part of the Southern Ohio Loamy Till Plain physiographic region of the Till Plains geological section. The Darby Plain is characteristically moderately low relief, broad hummocky ground moraine with several broad, indistinct recessional moraines, and poorly drained swales between hummocks. Soils are commonly loamy, high-lime Wisconsinan-age till and sparse outwash over carbonate rocks and shale.

Mapping from the Ohio Department of Natural Resources (ODNR) indicates that bedrock underlying the project site is more than 100 feet below existing ground surface, mapped at an elevation of approximately 780 feet on the eastern end of the project sloping downward to the west where it is at an elevation of approximately 700 feet.

A field reconnaissance of the project was performed by personnel from DLZ on February 16, 2017. No geohazard conditions were observed at the time of reconnaissance. The project area is generally agricultural land with residential properties located in the southeastern quadrant of the site. The surrounding topography is rolling, with approximately 10 feet in elevational changes. Pavement conditions along Norton Road were observed to be in good condition, with occasional longitudinal, transitional, and edge cracking. The pavement conditions along Johnson Road were observed to have a greater degree of cracking, with occasional potholes and patches.

3.0 EXPLORATION

3.1 FIELD EXPLORATION

A total of eleven (11) borings (B-001-0-17 through B-011-0-17) were performed for this geotechnical exploration on February 28 and March 2, 2017. Borings B-001-0-17 through B-007-0-17 were drilled in and along the existing Norton Road, while borings B-008-0-17 through B-011-0-17 were drilled in and along the existing Johnson Road. Six (6) borings were drilled in the existing roadway to a depth of between 8.5 and 9 feet below existing grade; five (5) borings were drilled within the new alignment of the proposed roadway to a depth of between 9 and 10 feet below existing grade.

The borings were drilled using either a track or truck-mounted drill rig, and were advanced between sampling intervals with 3¼-inch ID Hollow-Stem Augers (HSA). In general, disturbed soil samples were obtained with a 2-inch OD split-barrel sampler in general accordance with ASTM D-1586 (AASHTO T206) continuously through the soil overburden. The two hammer systems used were calibrated on May 20, 2016 and February 22, 2017 and had average drill rod energy efficiency ratios (ER) of 94.4 and 95.3 percent, respectively. The borings were backfilled with a soil/bentonite mixture at completion and the pavement was patched with asphalt cold patch for borings drilled in the roadway.

The surveyed boring locations are shown on the soil profile sheets presented in the Appendix. Boring logs and information concerning the drilling procedures are also presented in Appendix I. The boring locations and ground surface elevation at each boring were provided by OHM. The surveyed locations and ground surface elevations are listed on the individual boring logs.

3.2 LABORATORY TESTING PROGRAM

The laboratory testing program consisted of visual classifications, and general index tests. The soils were classified in general accordance with the ODOT SGE Section 600 Laboratory Testing. The general index tests consisted of grain-size analyses, moisture content, and plasticity determinations. The results of the classifications, grain-size analyses, moisture content, and plasticity determinations are shown on the boring logs in the Appendix. Sulfate testing (method TEX-145-E) was performed on one of the upper two samples from each boring. Loss on Ignition testing (AASHTO T-267) was also performed on select samples. Results of the sulfate and loss on ignition testing are presented in the Appendix.

4.0 FINDINGS

The subsurface conditions encountered in the borings generally consisted of pavement materials or topsoil generally over fill and possible fill, underlain by natural fine-grained cohesive soils. The following section presents the generalized subsurface conditions encountered by the borings. For more detailed information, please refer to the boring logs presented in the Appendix. Please note that the strata contact lines shown on the boring logs represent approximate boundaries between soil types. In the field, the actual soil transition might be different both vertically and laterally.

Table 1 below summarizes the thickness of the surficial materials and depth of fill/possible fill encountered at each soil boring.

Table 1. Summary of Geotechnical Exploration Findings						
Boring ID	Alignment	Latitude/Longitude (deg)	Ground Surface Elevation (ft)	Surficial Material & Thickness (in) ¹	Existing Depth of Fill/Possible Fill ² (ft)	
B-001-0-17	Proposed Norton Road	39.889672, -83.155353	892.755	Asphalt (10), Base (3)	2.5	
B-002-0-17	Proposed Norton Road	39.890553, -83.154927	891.395	Asphalt (10), Base (4)	N/A	
B-003-0-17	Roundabout ³	39.891227, -83.154804	886.916	N/A	1.5	
B-004-0-17	Roundabout ³	39.891516, -83.154603	891.172	Asphalt (13), Base (4)	4.5	
B-005-0-17	Proposed Norton Road	39.892027, -83.154557	893.499	N/A	N/A	
B-006-0-17	Proposed Norton Road	39.89275, -83.154145	893.941	N/A	3.0	
B-007-0-17	Proposed Norton Road	39.893359, -83.153929	893.007	Asphalt (10), Base (4)	4.0	
B-008-0-17	Proposed Johnson Road	39.891401, -83.155971	885.155	Asphalt (10)	N/A	
B-009-0-17	Roundabout ³	39.891426, -83.154928	888.719	N/A	3.0	
B-010-0-17	Proposed Johnson Road	39.891316, -83.154145	892.079	Asphalt (8), Base (4)	N/A	
B-011-0-17	Proposed Johnson Road	39.891282, -83.153396	890.955	Topsoil (2)	3.0	

Table 1: Summary of Geotechnical Exploration Findings

¹Thickness measurements represent the approximate measurement obtained in the field from the side of the bore hole. ²Depth measured from the existing ground surface.

³Roundabout Reference Line "CC" from OHM was utilized for alignment references.

4.1 OVERBURDEN CONDITIONS

At the ground surface, the borings located within the existing roadway encountered between 8 and 13 inches of asphalt pavement. Beneath the asphalt pavement, approximately 0 to 4 inches of aggregate base was

encountered. Topsoil was only reported to be encountered in boring B-011-0-17 at a thickness of 2 inches. Material reported as either fill or possible fill was recorded within six (6) borings to depths ranging from 1.5 to 4.5 feet below the existing surface. The fill or possible fill material encountered generally consisted of very soft to stiff, cohesive, fine-grained soils of moderate to high plasticity, visually or mechanically classified as being Silt and Clay (A-6a), Silty Clay (A-6b), or Clay (A-7-6). However, one sample of medium dense granular fill soil was encountered within B-001-0-17, mechanically tested to be Gravel (A-1-a). Underlying the surficial materials, the borings encountered natural soils consisting of generally soft to very stiff, cohesive, fine-grained soils visually or mechanically classified as being Sandy Silt (A-4a), Silt and Clay (A-6a), Silty Clay (A-6b), and Clay (A-7-6). One sample in B-007-0-17 contained loose, granular, natural soil visually classified as Gravel with Sand, Silt, and Clay (A-2-6). Samples within the natural overburden soils occasionally contained root hairs, iron oxide stains, and rock fragments. Sulfate content within the upper two soil samples of each boring ranged from 0 to 200 parts per million (ppm). Loss of Ignition (LOI) testing was performed on three (3) samples identified as containing organic materials and are presented in Table 2.

			010411	
Boring ID	Sample #	Depth (ft)	LOI	ODOT SGE Table 600-7 Description
B-007-0-17	SS-2	3.0-4.5	5.63	Moderately Organic
B-009-0-17	SS-1	0.0-1.5	4.34	Moderately Organic
B-011-0-17	SS-1	0.0-1.5	15.29	Highly Organic

4.2 BEDROCK CONDITIONS

Bedrock was not encountered within any borings performed as part of this subgrade exploration.

4.3 GROUNDWATER CONDITIONS

Seepage or free groundwater was not encountered within the depths of the borings during and upon completion of drilling. It should be noted that groundwater conditions may vary seasonally and with the passage of time. Therefore, the contractor should be equipped to deal with possible groundwater, seepage, and surface water that may accumulate in the open excavations during construction.

Although the groundwater table was not encountered in the borings, the subgrade soils at several boring locations were found to exhibit high moisture contents, and it is critical that effective measures to promote drainage of groundwater and surface water (i.e. grading of subgrade and surface, berms, ditches, etc.) be incorporated into the roadway design to prolong the pavement life.

5.0 GENERAL INFORMATION

The project reportedly consists of replacing the existing two-way stop crossroad with a roundabout. Preliminary design information calls for a westward shift of the roundabout from the existing intersection location with approach lanes offset from existing to accommodate. Proposed alignment shifts will require up to approximately one (1) foot of cut and up to approximately eight (8) feet of fill to bring existing ground surface up to the proposed grade. If the proposed roadway alignments differ from these assumptions, DLZ should be notified to provide revised recommendations as necessary. Additionally, it was assumed that the proposed work will be constructed in general accordance with the latest version of the ODOT Construction and Materials Specifications (CMS).

5.1 GENERAL EMBANKMENT CONSTRUCTION AND SUBGRADE PREPARATION

Embankment construction and subgrade preparation should be performed in accordance with ODOT CMS Items 203 and 204. Prior to embankment construction or subgrade preparation, perform clearing and grubbing, including removal of stumps and roots, in accordance with ODOT CMS Item 201; remove existing pavement and base materials, as well as other structures or obstructions, as necessary, in accordance with ODOT CMS Item 202. The embankment foundation and pavement subgrade should then be prepared by stripping any topsoil, organics, or other deleterious or unsuitable materials. Topsoil, pavement materials, and fill thicknesses encountered in the borings are listed in Table 1 of Section 4.0 of this report. It is anticipated that the areas of cultivated land will have greater organic soil thicknesses at the surface than encountered in the borings. Where new embankment fill is placed on existing slopes steeper than 4H:1V, Special Benching per ODOT Geotechnical Bulletin No. 2 (GB-2) is recommended.

Material to be utilized as borrow should be restricted to conform to Item 203.02R and 203.3 for embankment construction and Item 204.02 for subgrade. Both the embankment and subgrade materials specifications listed above allow the use of Item 703.16, A. (natural soil), and Item 703.16, B. (granular embankment). Note that the top 12 inches within the subgrade is required to have a minimum dry density of 100 pounds per cubic foot, pcf. All embankment materials should be spread and compacted in accordance with Items 204.07 and 204.03. Frozen materials should not be incorporated into any new fill nor should new fill, pavement materials, or structures be placed on top of frozen materials.

5.2 PAVEMENT SUBGRADE RECOMMENDATIONS

In general, the borings encountered fine-grained, cohesive soils at or near the anticipated pavement subgrade level consisting of soft to very stiff, cohesive, fine-grained soils classified as Sandy Silt, Silt and Clay, Silty Clay, and Clay (A-4a, A-6a, A-6b, and A-7-6) with lesser amounts of loose to medium dense, granular soils classified as either Gravel or Gravel with Sand, Silt, and Clay (A-1-a and A-2-6). It should be noted that the subgrade materials discussed contained material that was visually identified as fill or possible fill in six of the ten pavement borings.

Subgrade analyses in accordance with ODOT Geotechnical Bulletin No. 1 (GB-1) were performed for borings located along the proposed alignments of Norton Road, Johnson Road, and the roundabout. The results of the analyses are included in the Appendix. The GB-1 analyses calculated a design California Bearing Ratio (CBR) of 6 for Norton Road, the roundabout, and the entire project analyses; and a CBR of 5 was calculated for the Johnson Road analysis. The design CBR calculated by the GB-1 spreadsheet is an estimated average value of all

the subgrade samples based on correlations using the laboratory index testing results and/or ODOT soil classification. The cut and fill at each boring location are included in the analyses. The minimum calculated CBR value of 5 is recommended for pavement design along the project. A reduced CBR value has been recommended based on engineering judgment.

Generally, subgrade soils with a moisture content exceeding the optimum moisture content of the soil by three or more percentage points, or that have low N-values, are considered to be problematic soils (ref. ODOT GB-1, page 3 of 11). The results calculated by the GB-1 spreadsheet indicate that a majority of the borings encountered soils within 6.0 feet of the anticipated finished subgrade have low N-values and/or natural moisture contents exceeding their optimum moisture content by more than three percentage points. The high moisture contents in the majority of the samples are an indication of poor drainage along the alignment.

Sulfate contents of soil samples obtained from each boring were all tested to be under 3,000 parts per million (ppm) which is the upper limit concentration for ODOT screening criteria for consideration of chemical stabilization. However, plasticity Index (PI) values ranged from 10 to 31 and exceeded 20 frequently in mechanically tested soil samples; therefore, Chemically Stabilized Subgrade (Item 206) utilizing cement may not be used. Chemically Stabilized Subgrade (Item 206) could be utilized to stabilized the subgrade if lime stabilization methods are used. The ODOT GB-1 spreadsheet analysis for the entire project recommends a chemical stabilization depth of 12 inches.

Considering the general presence of both high moisture content and low blow count soils in the borings performed for this exploration, *global subgrade stabilization is recommended*. Furthermore, underdrains are recommended in an effort to promote drainage of the subgrade. Table 3 presents the recommended global subgrade stabilization alternatives for unstable subgrade.

Subgrade Stabilization Alternatives	Project Limits	Minimum Depths
Undercut and Replace with Item 204 Granular Material	Full Length	18 Inches
Undercut and Replace with Item 204 Granular Material and SS CMS 861 Geogrid	Full Length	12 Inches
Chemical Stabilized Subgrade Item 206 with Lime	Full Length	12 inches

Table 3: Recommended Global Subgrade Stabilization Alternatives

New embankment fill within 6 feet of the subgrade should have a CBR of 7 or above. Borrow sources for new embankment fill should be tested to confirm the materials meets these criteria along with the other required criteria described in this report and ODOT CMS Items 203 and 204.

If Item 204 Excavate and Replace is utilized, per ODOT GB-1, it is recommended that ODOT Plan Note G122 be included in the plans. The actual depths and limits of undercutting (Item 204 Excavate and Replace) should be determined by the Project Engineer in the field based on the results of proof rolling and subgrade observations

in accordance with ODOT CMS Item 204 as well as guidance provided under Item 204 in the ODOT Construction Administration Manual of Procedures (MOP). Any areas that exhibit rutting, instability, or other indications of soft or loose soils should be over excavated and replaced in accordance with ODOT CMS Item 204. Where the Item 204 Excavate and Replace (i.e. undercut) depth due to unstable subgrade is greater than 18 inches replacement using geogrid is recommended, where feasible. Use Item 703.16 Type B backfill in conjunction with geogrid and place geotextile at the base of the excavation. Supplemental specification 861 should be included in the plans if replacement with geogrid is utilized. The undercuts should extend 18 inches beyond the edge of the surface of the pavement, paved shoulder, or paved medians.

5.2.1 UNSUITABLE SUBGRADE

Unsuitable subgrade soils including soils classified as A-4b, A-2-5, A-7-5, A8-a and A8-b, soils with Liquid Limit greater than 65, and rock, shale or coal were not encountered in the performed borings within the excavation depths.

5.2.1.1 Rock Subgrade

Bedrock was not encountered within the performed borings of this exploration.

SUBGRADE EXPLORATION NORTON ROAD AND JOHNSON ROAD INTERSECTION IMPROVEMENTS FINAL Submittal (8/2/2017) Page 10 of 10

6.0 CLOSING REMARKS

We appreciate having the opportunity to be of service to you on this project. Please do not hesitate to call if you have any questions concerning this report.

Respectfully submitted,

DLZ OHIO, INC.

D. Matt Lyon, E.I. Geotechnical Engineer

Timothy Hampshire, P.E. Geotechnical Engineering Division Manager

APPENDIX

General Information-Drilling Procedures and Logs of Borings Legend-Boring Log Terminology Soil Profile Sheets (6) Boring Logs (11) Laboratory Testing Results ODOT GB-1 Spreadsheets

6121 Huntley Road, Columbus, OH 43229 OFFICE 614.888.0040 ONLINE WWW.DLZ.COM

GENERAL INFORMATION DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with the Ohio Department of Transporation (ODOT) Specifications for Geotechnical Exploration (SGE) dated July 17, 2015. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5 foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop hammer, the sampling increment was discontinued. Standard penetration data were recorded and one or more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ size diamond coring tools were used.

In the laboratory all samples were visually classified by a geotechnical engineer. Moisture contents of all soil samples were determined. A limited number of samples, based on SGE requirements, were selected for performance of grain-size analyses and plasticity characteristics tests. The results of these tests are shown on the boring logs.

The boring logs included in the Appendix have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at our laboratory for a period as dictated by the requirement of the SGE. After this period of time, they will be discarded, unless notified to the contrary by the client.

S:\Dept\Geotechnical\Forms\Borings\General Info English_ODOT rev_07172015.doc

LEGEND – BORING LOG TERMINOLOGY

Explanation of each column, progressing from left to right

- 1. Depth (in feet) refers to distance below the ground surface.
- 2. Elevation (in feet) is referenced to mean sea level, unless otherwise noted.
- 3. Standard Penetration (N) the number of blows required to drive a 2-inch O.D., 1-3/8 inch I.D., split-barrel sampler, using a 140-pound hammer with a 30-inch free fall. The blows are recorded in 6-inch drive increments. Standard penetration resistance is determined from the total number of blows required for one foot of penetration by summing the second and third 6-inch increments of an 18-inch drive.

50/n – indicates number of blows (50) to drive a split-barrel sampler a certain number of inches (n) other than the normal 6-inch increment.

- 4. The length of the sampler drive is indicated graphically by horizontal lines across the "Standard Penetration" and "Recovery" columns.
- 5. Sample recovery from each drive is indicated numerically in the column headed "Recovery".
- 6. The drive sample location is designated by the heavy vertical bar in the "Sample No., Drive" column.
- 7. The length of hydraulically pressed "Undisturbed" samples is indicated graphically by horizontal lines across the "Press" column.
- 8. Sample numbers are designated consecutively, increasing in depth.
- 9. Soil Description
 - a. The following terms are used to describe the relative compactness and consistency of soils:

Granular Soils – Compactness

	Blows/Foot
<u>Term</u>	Standard Penetration
Very Loose	less than 5
Loose	5 – 10
Medium Dense	11 – 30
Dense	31 – 50
Verv Dense	over 50

Cohesive Soils - Consistency

<u>Term</u> Very Soft Soft Medium Stiff Stiff Very Stiff	Unconfined Compression tons/sq.ft. less than 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0	Blows/Foot Standard Penetration less than 2 2 - 4 5 - 8 9 - 15 16 - 30	<u>Hand Manipulation</u> Easily penetrated 2-in. by fist Easily penetrated 2-in. by thumb Penetrated by thumb with moderate effort Readily indented by thumb but not penetrated Readily indented by thumbnail
Hard	over 4.0	over 30	Indented with difficulty by thumbhail

- b. Color If a soil is a uniform color throughout, the term is single, modified by such adjective as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".
- c. Texture is based on the Ohio Department of Transportation Classification System. Soil particle size definitions are as follows:

<u>Description</u>	<u>Size</u>	<u>Description</u>	<u>Size</u>
Boulders	Larger than 12"	Sand – Coarse	2.0 mm to 0.42 mm
Cobbles	12" to 3"	– Fine	0.42 mm to 0.074 mm
Gravel – Coarse	3" to ¾"	Silt	0.074 mm to 0.005 mm
– Fine	¾" to 2.0 mm	Clay	smaller than 0.005 mm

S:\Dept\Geotechnical\Forms\Borings\Legend ODOT English with 2015 SGE revisions.doc

- d. The main soil component is listed first. The minor components are listed in order of decreasing percentage of particle size.
- e. Modifiers to main soil descriptions are indicated as a percentage by weight of particle sizes.

trace	0 to 10%
little	10 to 20%
some	20 to 35%
"and"	35 to 50%

g.

Damp Moist

Wet

f. Moisture content of **cohesionless soils** (sands and gravels) is described as follows:

Moisture content below plastic limit

Moisture content near or above liquid limit

Moisture content above plastic limit to -3% liquid limit

Term	Relative Moisture or Appearance		
Dry Damp Moist Wet	Soil leaves no moisture when pressed between fingers Soil leaves very little moisture when pressed between fingers. Soil leaves small amount of moisture when pressed between fingers. The pore space is filled with water and water can be poured from sample with ease.		
The moisture content of cohesive soils (silts and clays) is expressed relative to plastic properties.			
Term	Relative Moisture or Appearance		
Drv	Brittle to powdery: Moisture content well below plastic limit		

10. Rock Hardness and Rock Quality Designation

a. The following terms are used to describe the relative strength of the **bedrock**.

er
F
es
es
f

- b. Rock Quality Designation, RQD This value is expressed in percent and is an indirect measure of rock soundness. It is obtained by summing the total length of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core run.
- 11. Gradation when tests are performed, the percentage of each particle size is listed in the appropriate column (defined in Item 9c).
- 12. When a test is performed to determine the natural moisture content, liquid limit moisture content, or plastic limit moisture content, the moisture content is indicated in tabular form.

13. The corrected standard penetration (N₆₀) value in blows per foot is indicated in tabular form.

S:\Dept\Geotechnical\Forms\Borings\Legend ODOT English with 2015 SGE revisions.doc

PROJECT DESCRIPTION

INTERSECTION IMPROVEMENTS AT THE INTERSECTIONS OF NORTON ROAD AND JOHNSON ROAD IN GROVE CITY, FRANKLIN COUNTY, OHIO. THE PROJECT INCLUDES THE ADDITION OF A ROUNDABOUT AND A WESTWARD SHIFT IN THE EXISTING INTERSECTION.

GEOLOGY

THE PROJECT IS LOCATED WITHIN DARBY PLAIN, PART OF THE SOUTHERN OHIO LOAMY TILL PLAIN PHYSIOGRAPHIC REGION. THE DARBY PLAIN IS GENERALLY MODERATELY LOW RELIEF WITH GROUND AND RECESSIONAL MORAINES WITH POORLY DRAINED SWALES BETWEEN HUMMOCKS. TYPICAL NATIVE OVERBURDEN SOIL IS COMPRISED OF LOAMY, HIGH-LIME WISCONSINAN-AGE TILL AND SPARSE OUTWASH.

BEDROCK IS MAPPED AS BEING 100 FEET OR MORE BELOW THE EXISTING GROUND SURFACE, RANGING IN ELEVATION FROM APPROXIMATELY 700 TO 780 FEET.

RECONNAISSANCE

A SITE RECONNAISSANCE WAS PERFORMED BY DLZ ON FEBRUARY 16, 2017. NO GEOHAZARDS WERE OBSERVED. SURROUNDING LAND USAGE IS PRIMARILY RESIDENTIAL AND CULTIVATED LAND. EXISTING PAVEMENT CONTAINED OCCASIONAL LONGITUDINAL, TRANSITIONAL, AND EDGE CRACKING ALONG NORTON ROAD AND MORE SEVERE CRACKING WITH OCCASIONAL POTHOLES AND PATCHES ALONG JOHNSON ROAD.

SUBSURFACE EXPLORATION

A TOTAL OF 11 BORINGS WERE DRILLING ON FEBRUARY 28 AND MARCH 2, 2017. BORINGS WERE ADVANCED USING ATV- OR TRUCK-MOUNTED ROTARY DRILL RIG WITH 3 1/4-INCH I.D. HOLLOW-STEM AUGERS TO DEPTHS RANGING FROM 8.5 TO 10.0 FEET BELOW GROUND SURFACE. SOIL SAMPLES WERE COLLECTED AT CONTINUOUS INTERVALS BY METHODS OF STANDARD PENETRATION TESTING (ASTM D-1586). AUTOMATIC HAMMER SYSTEMS WERE CALIBRATED ON MAY 20, 2016 AND FEBRUARY 22, 2017 WITH AVERAGE DRILL ROD ENERGY RATIOS (ER) OF 94.4% AND 95.3%.

EXPLORATION FINDINGS

IN GENERAL, SURFICIAL MATERIAL ENCOUNTERED BY THE BORINGS CONSISTED OF: 1) BETWEEN 8 TO 13 INCHES OF ASPHALT PAVEMENT OVER APPROXIMATELY O TO 4 INCHES OF AGGREGATE BASE IN BORINGS PERFORMED IN THE ROADWAY, 2) APPROXIMATELY O TO 2 INCHES OF TOPSOIL IN BORINGS PERFORMED OUTSIDE OF THE ROADWAY, AND 3) APPROXIMATELY O TO 4.5 FEET OF FILL OR POSSIBLE FILL MATERIAL WITHIN SIX (6) OF THE BORINGS. FILL OR POSSIBLE FILL MATERIAL WAS GENERALLY VERY SOFT TO STIFF COHESIVE FINE-GRAINED SOIL CLASSIFIED AS EITHER A-6A, A-6B, OR A-7-6; ONE SAMPLE IDENTIFIED AS FILL WAS MEDIUM DENSE GRANULAR SOIL CLASSIFIED AS A-1-A. NATURAL SOIL WAS ENCOUNTERED UNDERLYING SURFICIAL MATERIAL, CONSISTING OF GENERALLY SOFT TO VERY STIFF COHESIVE FINE-GRAINED SOILS CLASSIFIED AS EITHER GRANULAR SOIL CLASSIFIED AS A-2-6. NATURAL SOIL WAS IDENTIFIED AS OCCASIONALLY CONTAINING ROOT HAIRS, IRON OXIDE STAINS, AND ROCK FRAGMENTS.

SPECIFICATIONS

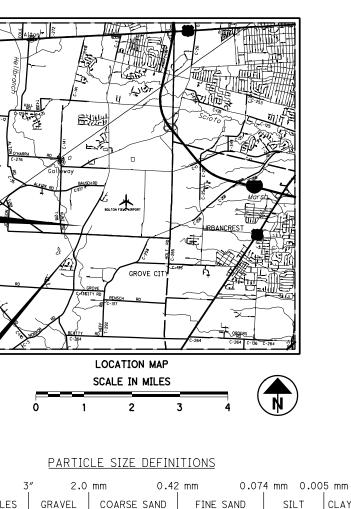
THIS GEOTECHNICAL EXPLORATION WAS PERFORMED IN ACCORDANCE WITH THE STATE OF OHIO, DEPARTMENT OF TRANSPORTATION, OFFICE OF GEOTECHNICAL ENGINEERING, SPECIFICATIONS FOR GEOTECHNICAL EXPLORATIONS, DATED JULY 2016.

AVAILABLE INFORMATION

ALL AVAILABLE SOIL AND BEDROCK INFORMATION THAT CAN BE CONVENIENTLY SHOWN ON THE GEOTECHNICAL EXPLORATION SHEETS HAS BEEN SO REPORTED. ADDITIONAL EXPLORATIONS MAY HAVE BEEN MADE TO STUDY SOME SPECIAL ASPECT OF THE PROJECT. COPIES OF THIS DATA, IF ANY, MAY BE INSPECTED IN THE DISTRICT DEPUTY DIRECTOR'S OFFICE OR THE OFFICE OF GEOTECHNICAL ENGINEERING AT 1980 WEST BROAD STREET.

LE	GEND	ODOT		SIFIED		2
	DESCRIPTION	CLASS		VISUAL		
0000	GRAVEL AND/OR STONE FRAGMENTS	A-1-a	1	-		
	GR. AND/OR ST. FRAGS. WITH SAND, SILT & CLAY	A-2-6	-	1		RD
	SANDY SILT	A-4a	2	5		C-
	SILT AND CLAY	A-6a	7	12		COLUMBUS SOUTHIEST
	SILTY CLAY	A-6b	4	11	PROJECT END	
	CLAY	A-7-6	8	9	NORTON ROAD (CR 3)	\parallel
		TOTAL	22	38	SLM 7.0	
XXXXX	PAVEMENT OR BASE = X = APPROXIMATE THICKNESS	VISUAL				8 8 1 2 2
	SOD AND TOPSOIL = X = APPROXIMATE THICKNESS	VISUAL				ddOBX XROPP
-	BORING LOCATION - PLAN VIEW.					C-135
	DRIVE SAMPLE AND/OR ROCK CORE BORING PLOTTED T HORIZONTAL BAR INDICATES A CHANGE IN STRATIGRAPH		L SCALE	ONLY.		
WC	INDICATES WATER CONTENT IN PERCENT.				PROJECT BEG	
N ₆₀	INDICATES STANDARD PENETRATION RESISTANCE NORMALIZED TO 60% DRILL ROD ENERGY RATIO.				(CR 3) SLM 6.6	
X/Y/Z	NUMBER OF BLOWS FOR STANDARD PENETRATION TEST X= NUMBER OF BLOWS FOR FIRST 6 INCHES. Y= NUMBER OF BLOWS FOR SECOND 6 INCHES. Z= NUMBER OF BLOWS FOR THIRD 6 INCHES.	(SPT):				
•	INDICATES A PLASTIC MATERIAL WITH A MOISTURE CON EQUAL TO OR GREATER THAN THE LIQUID LIMIT MINUS					
*	INDICATES A SAMPLE TAKEN WITHIN 3 FT OF PROPOSED	D GRADE.			BOULDERS	COBBL
SS	INDICATES A SPLIT SPOON SAMPLE.					

NΡ INDICATES A NON-PLASTIC SAMPLE.


		INDEX OF S	SHEETS		
SUMMARY OF	SOIL TEST	DATA, SHEE	T 2.		
LOCAT	ION	PLAN VIEW	PROFILE	CUT	FILL EMB.
FROM STA.	TO STA.	SHEET	SHEET	MAX.	MAX.
NORTON	ROAD				
BEGIN	206+00	3	3	<1 FT	8 FT
206+00	END	4	4	<1 FT	<1 FT
JOHNSON	ROAD				
BEGIN	END	5	5	<1 FT	5 FT
ROUNDA	BOUT				
BEGIN	END	6	6	-	6 FT

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

No. 40 SIEVE No. 200 SIEVE

No. 10 SIEVE

RECON. - DML - 2/16/2017 **DRILLING -** DLZ - 2/28 & 3/3/2017 **DRAWN -** DML - 4/2-14/2017 **REVIEWED -** VBP - 4/12/2017

64 9 102 PID ш Ē 0 С Δ 0 S

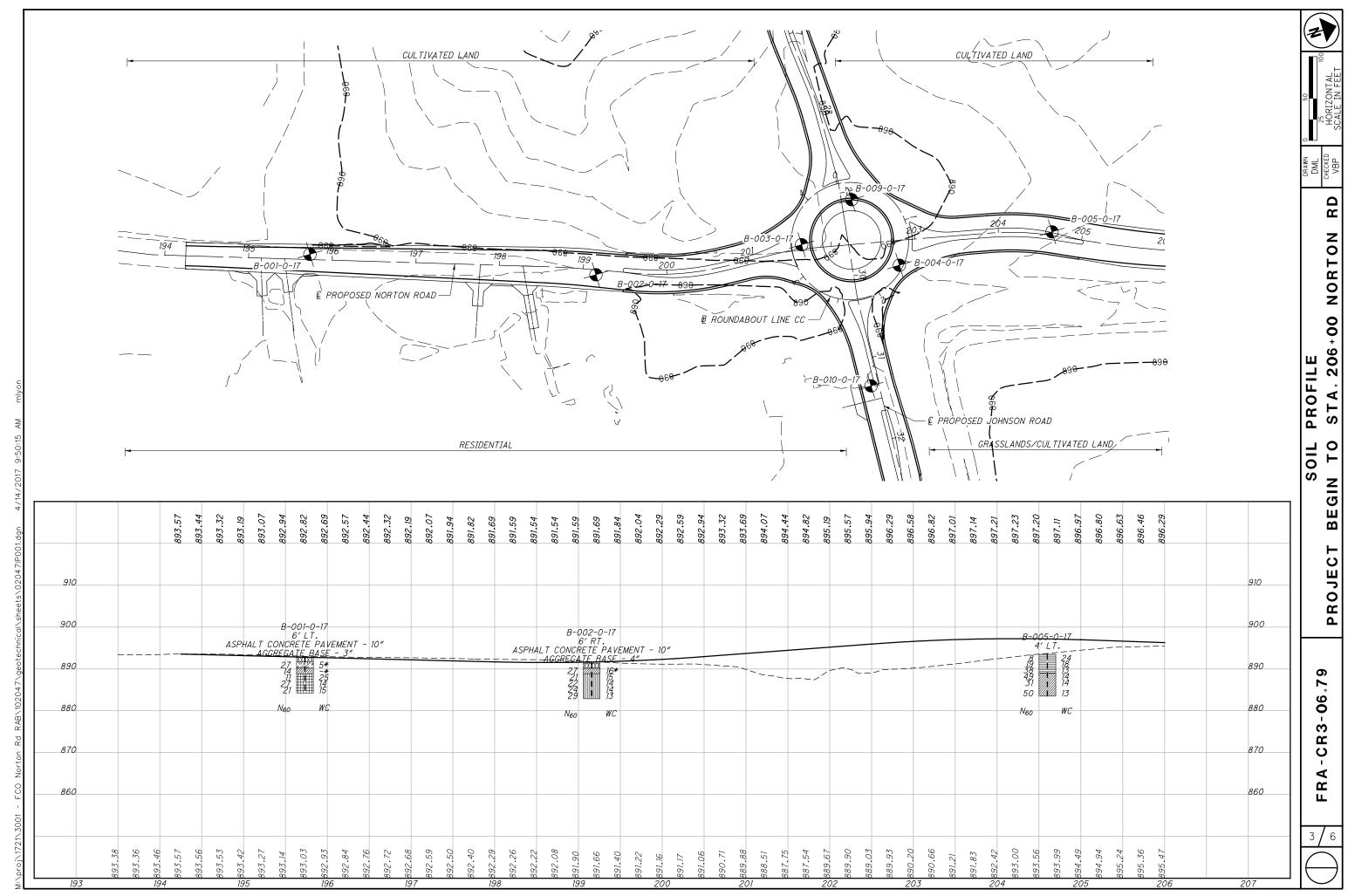
CLAY

6 ~ 90 က £ Ö ∢ £ ш

 \bigcirc

 \bigcirc

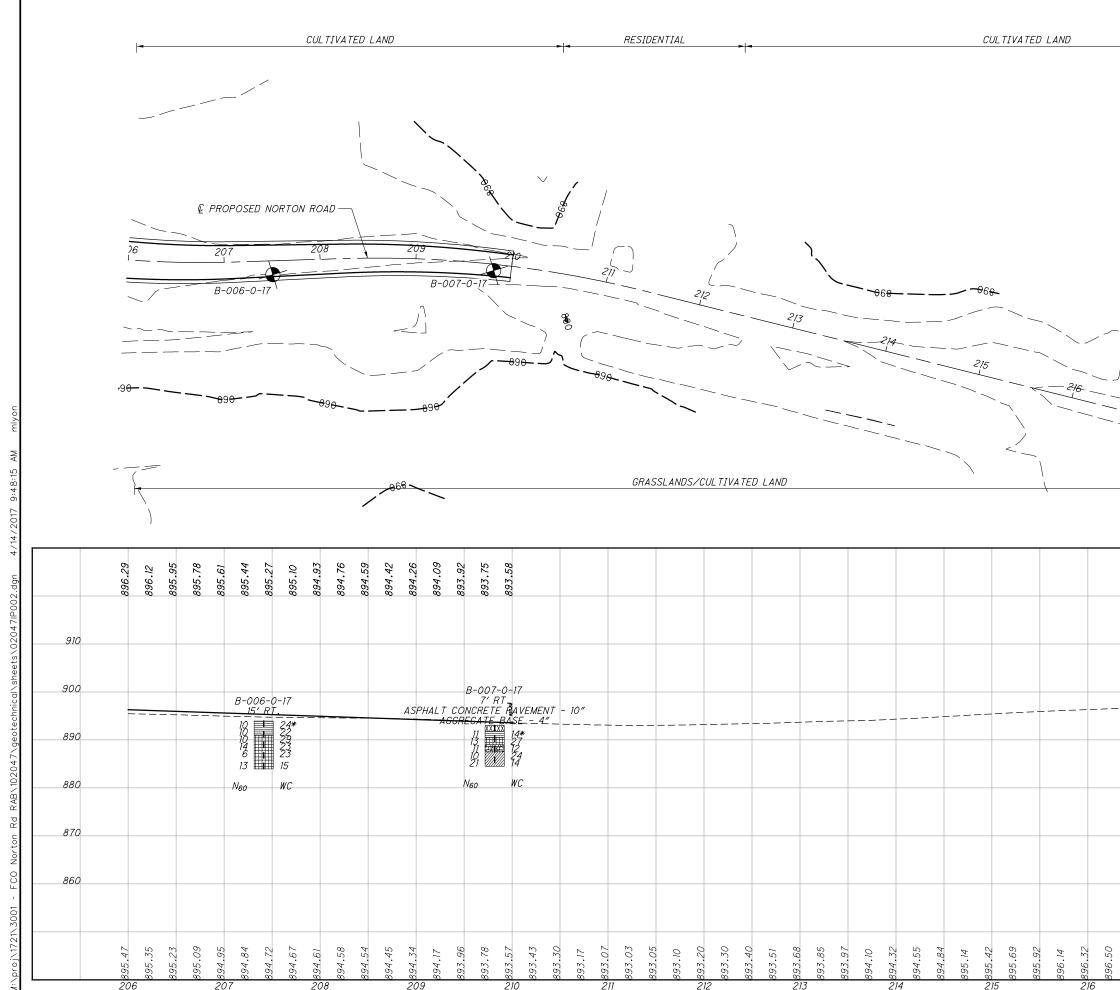
	SO4 ppm	10111	127 - - -	500	0			SO4 ppm	87	60	147
	OHIO CLASS	A-1-0 (0) A-6a (V) A-7-6 (16) A-7-6 (V) A-7-6 (V)	A-60 (8) A-40 (7) A-40 (V) A-40 (V) A-40 (V)	A-6b (V) A-6b (10) A-6b (V) A-6d (8) A-6d (V) A-6d (V)	A-6b (V) A-6b (10) A-7-6 (16) A-7-6 (V) A-7-6 (V) A-7-6 (V)	A-65 (V) A-7-6 (14) A-2-6 (V) A-60 (V) A-60 (7)		OHIO CLASS	A-7-6 (14) A-7-6 (V) A-6a (8) A-6a (V) A-6a (V)	A-6b (12) A-6b (V) A-4d (7) A-4d (V) A-4d (V) A-4d (V)	A-7-6 (V) A-7-6 (18) A-6d (9) A-6d (V) A-6d (V) A-6d (V)
	% MC	5 25 15	01 14 14 15 10 10 10 10 10 10 10 10 10 10 10 10 10	24 13 14 13 13	24 22 23 23 15	- 12 27 12 14		% MC	26 13 16	20 23 16	33 25 15 15
	Id	27 27	4 0	16	20	23 AND CL 12		Id	1 23	61 01	31
	ЪГ	NP 17	00	18	20	19 SA, SI, 17		ЪГ	21 16	19 19	20
		AND CLAN 44	30 26	3 4 3 0	40	CLAY 42 VITH 29 29			44 27	37 26	50 33
	% CLAY	SILT 54 SS-3 SS-3	40 40 AS SS-2 AS SS-2 AS SS-2 AS SS-2	AS SS-2 47 AS SS-2 39 AS SS-4 AS SS-4	AS SS-2 40 63 AS SS-3 AS SS-3 AS SS-3	, SILTY 62 FRAGS S SS-5 39		% CLAY	59 AS SS-1 40 AS SS-3 AS SS-3	60 AS SS-1 40 AS SS-3 AS SS-3	AS SS-2 64 53 AS SS-3 AS SS-3 AS SS-3 AS SS-3
	% SILT	6 2 3 BROWN AND GRAY, 3 9 34 SAME AS SAME AS	27 31 SAME A SAME A SAME A SAME A	SAME A 30 SAME A 31 SAME A SAME A	SAME A 23 25 25 SAME A SAME A SAME A	BROWN, SILTY 26 62 STONE FRAGS V SAME AS SS-5 27 39		% SILT	22 SAME A 31 SAME A SAME A	34 SAME A 32 SAME A SAME A	SAME A 27 29 SAME A SAME A SAME A
	°S⊤ S	2 DWN AN 9	13 13	1 ۲	თ თ	DARK 8 AND/OR 13	DATA	% S⊤	o 13 o	4 7	9
OAD	°C %	6 BR(3	ထတ	ഗ ഗ	2 2	3 GR. Ah 8		°C %	4 2	N D	0 M
NORTON ROAD	% GR	88 O	20	တ လ	0 21	1 BROWN,	Y OF SOIL TEST JOHNSON ROAD	% GR	9 01	2 0	o ത
NOF	HP tsf	- - 2.00 2.00	2.00 2.00 1.75 2.00 2.25	0.50 1.75 3.00 3.00 1.50 3.50	0.75 0.75 1.00 1.25 0.50 1.00	1.00 1.25 1.00 2.00	SUMMARY OF JOHNS	HP tsf	2.50 2.75 3.00 2.75	1.50 1.50 2.50 3.00 2.50	0.25 1.00 3.00 2.50 2.50
	REC	11 0 94 100	78 94 100 100	61 78 100 100 100	67 33 94 100 78 100	6 11 100	SUMN	REC	83 0 100 100	72 89 100 83	50 50 50 50 50 50 50 50 50 50 50 50 50 5
	N60	9 0 ~ 9 <u>5</u> 2	12 12 15 14 13 12	5 23 30 30 30	იიია4 დ	20 4 8 4		N60	4 1 2 C 7 1	10 11 25 14 25	3 12 3 3 15 3 16
	SAMPLE ID	— 0 м 4 Ю	- 0 M 4 D	← 0 M 4 G Ø	← N M 4 M Ø	- 0 M 4 D		SAMPLE ID	← 0 M 4 D	← 0 M 4 D	- 0 N 4 N O
	TO	02.50 04.00 05.50 07.00 08.50	- 02.50 - 04.00 - 05.50 - 07.00 - 08.50	- 01.50 - 03.00 - 04.50 - 06.00 - 07.50 - 10.00	- 01.50 - 03.00 - 04.50 - 06.00 - 07.50 - 10.00	02.50 04.00 05.50 07.00 08.50		TO	02.50 04.00 05.50 07.00	02.50 04.00 05.50 07.00	- 01.50 - 03.00 - 04.50 - 06.00 - 07.50
	FROM	01.00 - 02.50 02.50 - 04.00 04.00 - 05.50 05.50 - 07.00 07.00 - 08.50	01.00 - 01.00 - 02.50 - 004.00 - 005.50 - 007.00	00.00 - 00.00 - 00.00 - 00.00 - 00.00 - 00.00 - 00.00 - 00.00 - 008.50 - 00	00.00 - 00.00	01.00 - 02.50 02.50 - 04.00 04.00 - 05.50 05.50 - 07.00 07.00 - 08.50		FROM	01.00 - 02.50 02.50 - 04.00 04.00 - 05.50 05.50 - 07.00 07.00 - 08.50	01.00 - 0 02.50 - 0 04.00 - 0 05.50 - 0 07.00 - 0	00.00 01.50 03.00 04.50 06.00 06.00
	EXPLORATION NO., STATION & OFFSET	B-001-0-17 STA. 195+73.3 LATITUDE = 39.889672 LONGITUDE = -83.155353	B-002-0-17 STA. 199+15.8 LATITUDE = 39.890553 LONGITUDE = -83.154927	B-005-0-17 STA. 204+63.7 LATITUDE = 39.892027 LONGITUDE = -83.154557	B-006-0-17 STA. LATITUDE = LONGITUDE =	B-007-0-17 STA. 209+81.9 LATITUDE = 39.893359 LONGITUDE = -83.153929		EXPLORATION NO., STATION & OFFSET	B-008-0-17 STA. 26+18.52 LATITUDE = 39.891401 LONGITUDE = -83.155971	B-010-0-17 STA. 31+33.1 LATITUDE = 39.891316 LONGITUDE = -83.154145	B-011-0-17 STA. 33+43.4 LATITUDE = 39.891282 LONGITUDE = -83.153396


SUMMARY OF SOIL TEST DATA NORTON ROAD

 \bigcirc

 \bigcirc

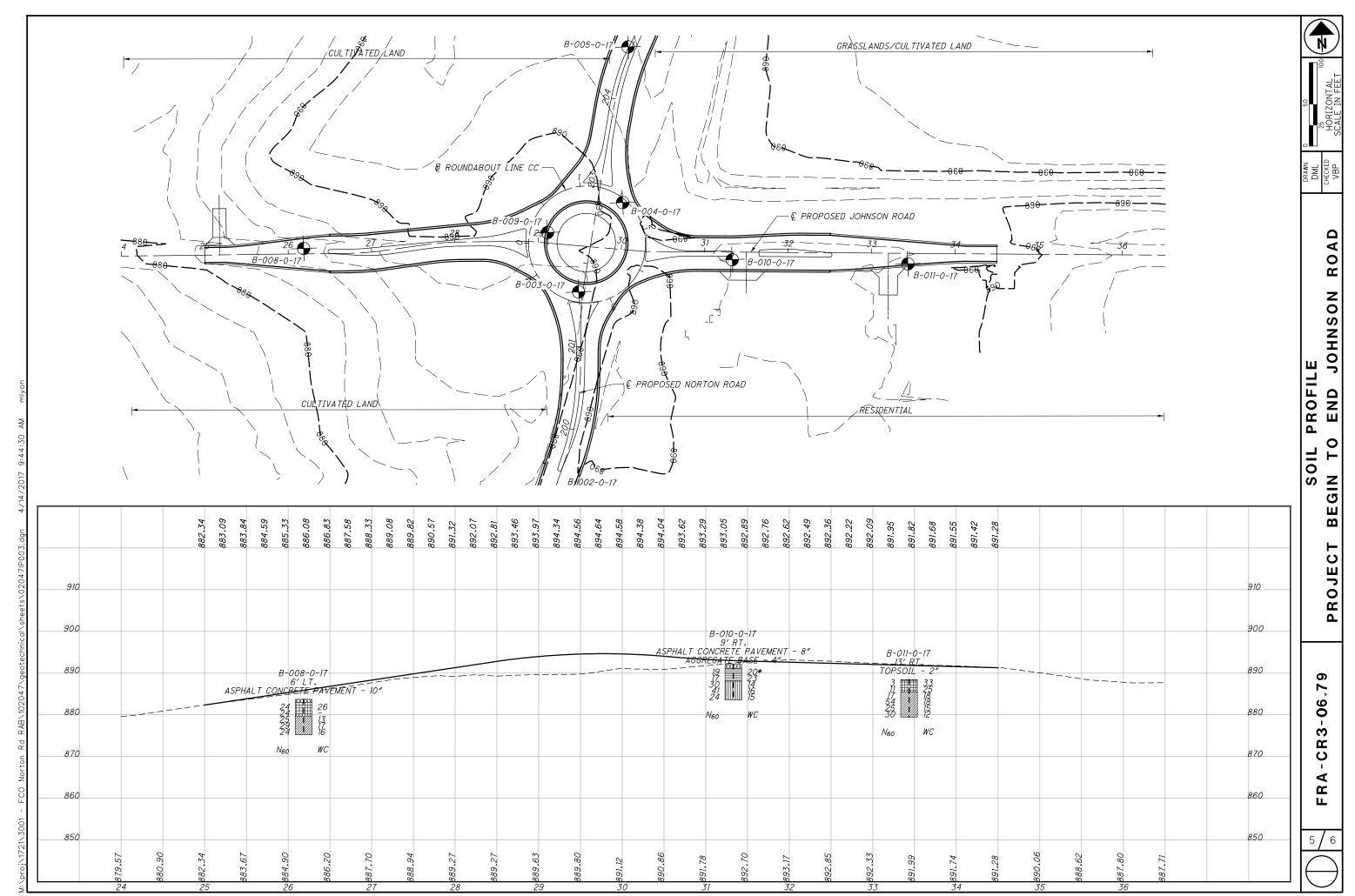
DML DML CHECKED VBP			۲	ILE Test data	- -	LES ES	u		SOIL OF	°S ≻	AR	SUMMARY OF	SI				FRA-CR3-06.79	2 / 6
														i				
	I	A-6b (V)	<u>2</u> ന				AS SS-3	SAME A	, 0,			3.00	100	21	9	08.50 - 10.00		
	ı	A-6b (V)	15				S SS-3	SAME A	0)			2.00	78	15	വ	06.00 - 07.50	-	
	ı	(V) A-6d (V)	15				S SS-3	SAME A	0,			1.00	44	80	4	04.50 - 06.00	LONGITUDE = -83.154928 (
	I	A-6d (9)	17	13	16	29	46	33	12	7	2	1.00	78	80	М	03.00 - 04.50	LATITUDE = 39.891426 C	
	120	A-7-6 (14)	26	23	20	43	60	9 27 6	თ	м	-	0.50	67	4	2	01.50 - 03.00		
	I	(V) D9-A	27			ΊАΥ	T AND CLAY	N, SIL	BROW			0.25	67	M	-	00.00 - 01.50	B-009-0-17 C	
	I	A-7-6 (V)	13				S SS-3	SAME A	07			1.50	100	0	ß	07.50 - 09.00	~	
	I	A-7-6 (V)	21				AS SS-3	SAME A	07			1.25	83	თ	4	06.00 - 07.50	LONGITUDE = -83.154603 C	
	I	A-7-6 (17)	29	29	20	49	65	27	പ	2	,	1.25	100	7	m	04.50 - 06.00	39.891516	
	ı	(V) D9-A	23				S SS-1	SAME A	0,			0.50	94	4	2	03.00 - 04.50	STA. 1+60.0	
	80	A-6a (10)	21	14	17	31	32 44	32	11	9	7	1.00	56	7	-	01.50 - 03.00	B-004-0-17	
	I	A-6b (V)	15				S SS-3	SAME A	0,			3.00	100	19	9	08.50 - 10.00		
	I	A-6b (V)	13				AS SS-3	SAME A	0)			3.00	100	20	വ	06.00 - 07.50)	
	ı	A-6b (V)	21				S SS-3	SAME A	0,			0.50	50	4	4	04.50 - 06.00	LONGITUDE = -83.154804 (
	I	A-6b (12)		20	19	39	57	28	11		-	0.50	83	4	м	03.00 - 04.50	LATITUDE = 39.891227 C	
	140	A-7-6 (15)		45 20 25	20	45	61	29	7	2		0.50	100	ß	2	01.50 - 03.00	STA. 3+38.8	
	I	A-6b (V)		RGANIC	HTLY C	, SLIG	CONT. ROOTS,	CONT.	CLAY, C		BLACK,	0.50 B	67	4	-	00.00 - 01.50	B-003-0-17 C	
	mdd	CLASS	MC %	Ιd	РГ	LL	сLAY	SILT	, LS	ŝ	GR 8	tsf	REC	N60	ID II	FROM TO	STATION & OFFSET	
	S04	OHO	%				%	%	%	%	%	ЧH	%		SAMPLE		EXPLORATION NO	


SUMMARY OF SOIL TEST DATA ROUNDABOUT

 \bigcirc

 \bigcirc

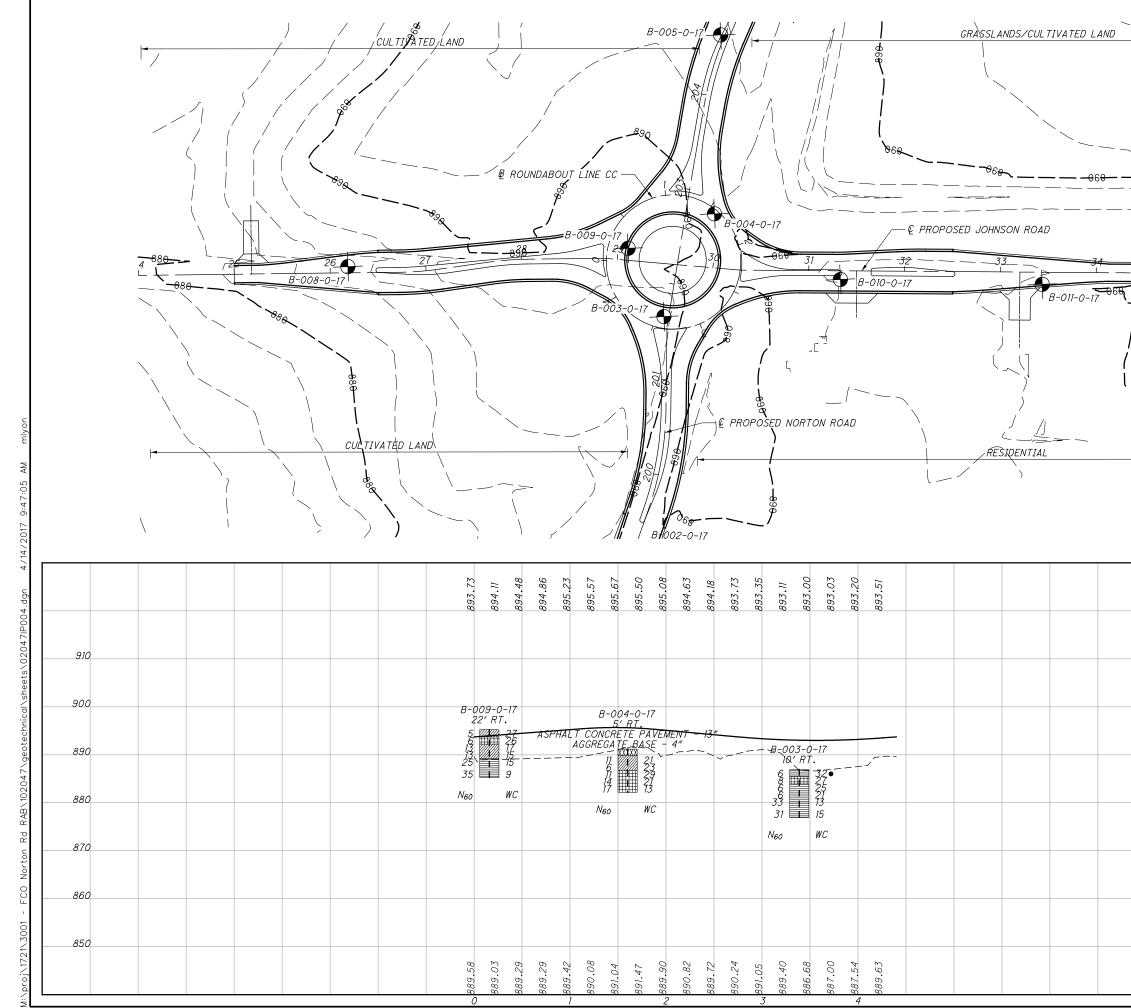
 \bigcirc



0

 \bigcirc

 \bigcirc


SOIL PROFILE DML 0 50 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	STA, 206+00	FRA-CR3-06.79	4/6
	910 900 890	880 870 860	
			18
218			2
			896.96
			896.70 12 896.82
			896.61

0

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

DML 25 CHECKED HORIZONTAL 100 VBP SCALE IN FEET	SOIL PROFILE ROUNDABOUT LINE CC		3-06.79	FRA-CR3-06.79	6/6
	910	900	890 880	870 860	850
	9				
8					

TYPE: ROADWAY S	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		DLZ / K. CON LZ / T. SCHI			l rig: Mer:		CME 75-K ME AUTON		_	STAT ALIGI						,			ATION ID 1-0-17
	DRILLING METHOD:	3.25"	HSA / NQ2			BRATI			/22/17	_	ELEV								.5 ft.	PAGE
START: <u>2/28/17</u> END: <u>2/28/17</u> S	SAMPLING METHOD:		SPT		ENE	RGY R	ATIO	(%):	95.3		LAT /	LON	G: _		39.88	89672	<u>2, -83</u>	15535	53	1 OF 1
MATERIAL DESCRIPTIC	ON	ELEV.	DEPTH	IS	SPT/	N ₆₀	REC	SAMPLE	HP		GRAD	ATIO	N (%)	ATT	ERBE	RG		ODOT	BACK
AND NOTES		892.8		10	RQD	1 60	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	I ILL
ASPHALT CONCRETE PAVEMENT - 10"		891.7			10															
MEDIUM DENSE, BROWN, GRAVEL AND ST FRAGMENTS, TRACE SAND, DAMP [FILL]	r C	890.3		- 2 -	12 9 8	27	11	SS-1	-	89	6	2	- 3	3 -	NP	NP	NP	5	A-1-a (0)	
01.0'-2.5', LOW RECOVERY, DROVE ON LAP AGGREGATES.		888.8	-	- 3 -	4 5 4	14	0	SS-2	-	-	-	-	-	-	-	-	-	-	A-6a (V)	V > V > V > L >
STIFF, BROWN AND GRAY, SILT AND CLAY TRACE GRAVEL, MOIST @2.5'-4.0', NO RECOVERY, COLLECTED SOI STIFF TO VERY STIFF, BROWN AND GRAY.				- 4 - - 5 -	3 3 4	11	78	SS-3	1.50	0	3	9	34	54	44	17	27	25	A-7-6 (16)	$ \begin{vmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
STIFF TO VERY STIFF, BROWN AND GRAY, SILT, LITTLE SAND, TRACE GRAVEL, DAMP @5.5'-8.5', BROWN.				- 6 -	6 7 10	27	94	SS-4	2.00	-	-	-	-	-	-	-	-	14	A-7-6 (V)	
		884.3	FOB-	- ' -	7 7 6	21	100	SS-5	2.00	-	-	-	-	-	-	-	-	15	A-7-6 (V)	7 L' 7 L 7 > ^ 7 > 7 L 7 - L
			LOD																	

NOTES: NONE ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; POURED 25 LB. HOLE PLUG; SHOVELED SOIL CUTTINGS

TYPE: ROADWAY PID: 102047 SFN:	DRILLING FIRM / OPER SAMPLING FIRM / LOG DRILLING METHOD:	GER: D	LZ / T. SCHMITZ ' HSA / NQ2	DRILL R HAMME CALIBR	R: CI		/ATIC /22/17		ELEV	IMEN ⁻ ATION	: PRO 891	POSEE .4 (MS	D NOF	RTON	ROAE 8	.5 ft.	ATION 2-0-17 PAG 1 OF
START: <u>2/28/17</u> END: <u>2/28/17</u> MATERIAL DESCRIPTI	SAMPLING METHOD:	ELEV.	SPT			(%): SAMPLE	95.3		LAT / GRAD/		_		ERBE		.15492		1
AND NOTES	ON	891.4	DEPTHS	SPT/ RQD N	60 (%)	ID	(tsf)				(70) SI CI	_	PL	PI	wc	ODOT CLASS (GI)	BAC FIL
ASPHALT CONCRETE PAVEMENT - 10"	\boxtimes	\otimes															××××
AGGREGATE BASE - 4" VERY STIFF, BROWN, SILT AND CLAY , LIT LITTLE GRAVEL, MOIST	TLE SAND,	890.2	1 _ 	8 2	7 78	SS-1	2.00	12	8	13	.7 40	30	16	14	16	A-6a (8)	
STIFF TO VERY STIFF, BROWN, SANDY SII TRACE GRAVEL, DAMP			- 3 -	7 7 2 6	1 94	SS-2	2.00	5	9	15	1 40	26	16	10	15	A-4a (7)	$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ \end{array} \end{array}$
@2.5'-5.5', CONTAINS IRON OXIDE STAINS			- 4 -	6 7 2 7	2 100	SS-3	1.75	-	-	-		-	-	-	14	A-4a (V)	
@5.5'-8.5', BROWN AND GRAY MOTTLED.			6	9 7 2 8	4 100	SS-4	2.00	-	-	-		-	-	-	14	A-4a (V)	V L V 7 7 V 7 V 7 V 7 V
@7.0'-8.5', CONTAINS ROCK FRAGMENTS.		882.9		6 8 2 10	9 100	SS-5	2.25	-	-	-	- -	-	-	-	13	A-4a (V)	7 L 7 X 7 X 7 L

NOTES: NONE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; POURED 25 LB. HOLE PLUG; SHOVELED SOIL CUTTINGS

PR TY		RA-CR3-06.79 OADWAY	DRILLING FIRM / OPER		DLZ / V. DEARIN	_	LL RIG IMER:		CME 55-TA			STAT ALIG			-			, 10' F Bout			ATION ID 3-0-17
PIE ST.	: <u>102047</u> SF	N: END: 3/2/17	DRILLING METHOD:	3.25	' HSA / NQ2 SPT					5/20/16 94.4	_	ELE\ LAT /			886.9				1(3.1548(0.0 ft. 04	PAGE 1 OF 1
		MATERIAL DESC AND NOT		ELEV. 886.9	DEPTHS	SPT/ RQD		REC (%)	SAMPLE ID	HP (tsf)	GR	GRAE cs		<u>``</u>) CL	ATT LL	FERB	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
_ LI	OFT TO MEDIUM S ITLE SAND, TRAC IGHTLY ORGANIC	CE GRAVEL; CON	TY CLAY, TRACE TO AINS ROOTS,	885.4	- 1	1 2	6	67	SS-1	0.50	-	-	-	-	-	-	-	-	32	A-6b (V)	
	DFT, BROWN AND	GRAY, CLAY, SO	ME SILT, TRACE	883.9	- 2	1 2	8	100	SS-2	0.50	1	2	7	29	61	45	20	25	27	A-7-6 (15)	
	DFT, BROWN AND ACE GRAVEL, MO 3.0'-4.5', BROWN	DIST			- 4	1 2	6	83	SS-3	0.50	1	3	11	28	57	39	19	20	25	A-6b (12)	1>1/1>
3001.00	4.5'-6.0', CONTAIN	IS ROOT HAIRS.			- 5		6	50	SS-4	0.50	-	-	-	-	-	-	-	-	21	A-6b (V)	
	6.0'-10.0', VERY S OCK FRAGMENTS		ROWN, CONTAINS		- 7	- 9 - 12	33	100	SS-5	3.00	-	-	-	-	-	-	-	-	13	A-6b (V)	, , , , , , , , , , , , , , , , , , ,
С Ш					- 8	8															$\begin{array}{c} 7 > 1 \\ 7 > 1 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$
GINT/PROJ				876.9		8	31	100	SS-6	3.00	-	-	-	-	-	-	-	-	15	A-6b (V)	7 LV 7 L

	Rojec (Pe:	CT:	FRA-CR ROADW		DRILLING FIRM / OPER/ SAMPLING FIRM / LOGO		DLZ / K. CC DLZ / T. SCH		•	L RIG: MER:		CME 75-K			STAT ALIG			-	ROUI), 5' R 30UT	T.	_	ATION ID 4-0-17
	D: TART:	102047 2/28/1	SFN:	2/28/17	DRILLING METHOD: SAMPLING METHOD:	3.25	" HSA / NQ2 SPT	2			ON DA		/ <u>22/17</u> 95.3	_	ELEV							9 .15460	.0 ft.)3	PAGE 1 OF 1
			MATE	RIAL DESCRIPT AND NOTES	TION	ELEV. 891.2	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID		GR	GRAD cs	ATIC FS	N (% si) CL	ATT LL	ERBE PL	ERG PI	WC	ODOT CLASS (GI)	BACK FILL
	-	ALT CONC EGATE BA		'EMENT - 13"		889.8																		
AB.	SAND,	TRACE G	RAVEL; Ć	GRAY, SILT ANI ONTAINS ROCK ST [POSSIBLE F				- 2 -	4 4 3	11	56	SS-1	1.00	7	6	11	32	44	31	17	14	21	A-6a (10)	
NORTON						886.7		- 4 -	2 2 2	6	94	SS-2	0.50	-	-	-	-	-	-	-	-	23	A-6a (V)	~LV ~L 7 LV 7 L 7 >
			i Brown, , Damp To		LT, TRACE SAND,			- 5 -	2 3 4	11	100	SS-3	1.25	1	2	5	27	65	49	20	29	29	A-7-6 (17)	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
S\1721-0	26.0'-9	9.0', BRO\	VN AND G	RAY MOTTLED.				- 7 -	2 4 5	14	83	SS-4	1.25	-	-	-	-	-	-	-	-	21	A-7-6 (V)	7 > C 7 > C 7 L
			E TO SOM	ie fine to coa Tains.	RSE SAND,	882.2	EOB-	- 8 - - 9	5 6 5	17	100	SS-5	1.50	-	-	-	-	-	-	-	-	13	A-7-6 (V)	77777777777777777777777777777777777777

NOTES: NONE ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; POURED 25 LB. HOLE PLUG; SHOVELED SOIL CUTTINGS

	ROJECT: /PE:		FRA-CF ROADV	R3-06.79 VAY	DRILLING FIRM / OPE			LZ / V. DE _Z / T. SCH		-	l Rig Mer:	-	CME 55-TA			STA1 ALIG						,	lt. Roae		ATION ID 5-0-17
		2047 3/2/17	SFN:	3/2/17	DRILLING METHOD: SAMPLING METHOD:			HSA / NQ2 SPT	2	-		ON DA		/20/16 94.4		ELE\ LAT /			893.5	<u> </u>		EOB: 7, -83	1(.1545	0.0 ft. 57	PAGE 1 OF 1
			MATE	ERIAL DESCRIP AND NOTES	ΓΙΟΝ		ELEV. 893.5	DEPT	HS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAE cs		DN (%) CL	ATT	ERB	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
				BROWN, SILTY GRAVEL, DAMP					- 1 -	WOH 2 3	8	61	SS-1	0.50	-	-	-	-	-	-	-	-	24	A-6b (V)	
N RAB.G									- 2 -	2 3 9	19	78	SS-2	1.75	6	6	11	30	47	34	18	16	18	A-6b (10)	
NOKION	@3.0'-4.5'	, VERY	STIFF.			<u>е</u>	889.0		4 -	5 10 14	38	100	SS-3	3.00	-	-	-	-	-	-	-	-	13	A-6b (V)	~LV ~L 7 LV 7 L 7 N 7 N
. 0	AND CLA	Y, SON		TRACE GRAVEL	Y Mottled, silt ., damp				- 5 -	7 13 18	49	100	SS-4	3.00	8	9	13	31	39	30	17	13	14	A-6a (8)	
	26.0'-10.0 26.0'-10.0								- 7 -	7 8 12	31	100	SS-5	1.50	-	-	-	-	-	-	-	-	14	A-6a (V)	1>1 1> 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
SOJECI									- 8 -	5															$\begin{array}{c} 1 > 1 \\ 1 > 1 \\ 1 > 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
GINTAF						β ε	883.5	—EOB—		12 20	50	100	SS-6	3.50	-	-	-	-	-	-	-	-	13	A-6a (V)	TLV TL

	ROJECT (PE:	Г:	FRA-CR ROADW		DRILLING FIRM / C			DLZ / K. CO LZ / T. SCH			L RIG		CME 75-K									1, 15' RTON	rt. Roai		ATION ID 6-0-17
	D: <u>10</u> TART:)2047 2/28/17	SFN: Z END:	2/28/17	DRILLING METHO			' HSA / NQ2 SPT		CALI	BRATI		ATE: 2	/22/17 95.3		ELE\ LAT			893.9				1(.15414	0.0 ft. 45	PAGE 1 OF 1
		2/20/11	MATE	RIAL DESCRIP		<u></u>	ELEV. 893.9	DEPTI	HS	SPT/ RQD	N ₆₀		SAMPLE ID		GR	GRAD	DATIC) CL		ERB	- /	wc	ODOT CLASS (GI)	BACK
5	SOME G	RAVEL,			AY , LITTLE SAND, HTLY ORGANIC,		00010		- 1 -	2 2 4	10	67	SS-1	0.75	-	-	-	-	-	-	-	-	24	A-6b (V)	******
	<i>I</i> OIST [F	FILLJ					890.9		2 -	3 3 3	10	33	SS-2	0.75	21	7	9	23	40	40	20	20	22	A-6b (10)	
				DARK BROWN, GRAVEL, DAN					_ 4 -	2 3 3	10	94	SS-3	1.00	0	3	9	25	63	48	22	26	29	A-7-6 (16)	~LV ~L 7 LV 7 L 7 > 1 >
00.100£	@4.5'-10).0', BRO	WN.						- 5 -	3 4 5	14	100	SS-4	1.25	-	-	-	-	-	-	-	-	23	A-7-6 (V)	
-1.771/01									- 7 -	2 2 2	6	78	SS-5	0.50	-	-	-	-	-	-	-	-	23	A-7-6 (V)	1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 > 1 >
							002.0		- 8 -	3 4	13	100	SS-6	1.00	-	-	-	-	-	-	-	-	15	A-7-6 (V)	
S	SILT, LIT	TLE SAM	ID, TRACE				883.9	EOB	- 4 - - 5 - - 6 - - 7 - - 8 -	$\begin{bmatrix} 3 \\ 3 \\ 4 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix}$	10 14 6 13	100 78	SS-4 SS-5	1.25 0.50	0	3	-	-	63 - -	48 - - -	22 - - -	-	23 23	A-7-6 (V) A-7-6 (V)	

	CR3-06.79 DWAY	DRILLING FIRM / O SAMPLING FIRM / I DRILLING METHOD	LOGGER: D	DLZ / K. CONRAD LZ / T. SCHMITZ ' HSA / NQ2	HAM	L RIG: MER: BRATI	CN	CME 75-K /IE AUTON ATE: 2			STAT ALIGI ELEV	NME	NT:P	ROPC	SED	NOF		ROAI	EXPLOR B-007	
	D: 2/28/17	SAMPLING METHO		SPT	ENERGY RATIO (%): 95.3						LAT /							.1539	29	1 OF 1
 MA	TERIAL DESCRIPT AND NOTES	ION	ELEV. 893.0	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD cs	ATIC FS	<u> </u>		ATT LL	ERBE PL	ERG PI	wc	ODOT CLASS (GI)	BACK FILL
ASPHALT CONCRETE F AGGREGATE BASE - 4"	AVEMENT - 10"		891.8				/													******
MEDIUM STIFF TO STIF LITTLE TO SOME SAND			890.5		12 4 3	11	6	SS-1	1.00	-	-	-	-	-	-	-	-	14	A-6b (V)	
│FILL] │@1.2'-2.5', LOW RECO\ □ STIFF. GRAY. CLAY . LI			889.0	- 3 -	3 2 6	13	72	SS-2	1.25	1	3	8	26	62	42	19	23	27	A-7-6 (14)	1121-1-
SLIGHTLY ORGANIĆ, M @3.0'-4.5', MODERATEI	OIST [POSSIBLE F Y ORGANIC (LOI =	LL] 5.63%)	887.5	- 5 -	9 4 3	11	11	SS-3	-	-	-	-	-	-	-	-	-	12	A-2-6 (V)	7 LV 7 1
LOOSE, BROWN, GRAN WITH SAND, SILT, AND FRAGMENTS, MOIST	CLAY, CONTAINS	LARGE ROCK		- 6 - - - 7 -	3 3 4	10	17	SS-4	1.00	-	-	-	-	-	-	-	-	24	A-6a (V)	~ LV ~ 7 7 L V 7 7 L V 7 7 L V 7
@4.0'-5.5', LOW RECO MEDIUM STIFF TO STIF CLAY, LITTLE SAND, LI	F, BROWN AND G	RAY, SILT AND	884.5	EOB - 8 -	⁺ 6 7	21	100	SS-5	2.00	13	8	13	27	39	29	17	12	14	A-6a (7)	~LV ~

NOTES: NONE ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; POURED 25 LB. HOLE PLUG; SHOVELED SOIL CUTTINGS

	PROJECT: FRA-CR3-06.79 TYPE: ROADWAY	DRILLING FIRM / OPERATOR: DLZ / K. CONRAD DRILL RIG: CME 75-KC-77 STATION / OFFSET: SAMPLING FIRM / LOGGER: DLZ / T. SCHMITZ HAMMER: CME AUTOMATIC ALIGNMENTPROPOS									-	19, 6' l INSOI			ATION ID 3-0-17				
	PID: <u>102047</u> SFN: <u></u> START: <u>2/28/17</u> END: <u>2/28/17</u>	DRILLING METHOD: SAMPLING METHOD:	3.25'	HSA / NQ2 SPT	_	ALIBRAT NERGY F			/22/17 95.3		ELEV LAT /				ISL) .8914(5.5 ft. 71	PAGE 1 OF 1
	MATERIAL DESCRIPT AND NOTES	ION	ELEV. 885.2	DEPTHS	SP [.] RQ		REC (%)	SAMPLE ID	HP (tsf)	GR	GRAD CS	ATIO FS			TTERE	PI	wc	ODOT CLASS (GI)	
_	ASPHALT CONCRETE PAVEMENT - 10" VERY STIFF, BROWN AND GRAY, CLAY, S		884.4	- 1															
AB.GP.	LITTLE SAND, TRACE GRAVEL, CONTAINS STAINS, MOIST			2	7	8 24	83	SS-1	2.50	6	4	9	22	59 4	4 21	23	26	A-7-6 (14)	
RTON F	@2.5'-4.0', NO RECOVERY, COLLECTED S	OIL CUTTINGS.	881.2	- 3	4	24 9	0	SS-2	-	-	-	-	-	- -	-	-	-	A-7-6 (V)	1 > N 1 > 7 L V 7 L
1.00 NO	VERY STIFF, BROWN AND GRAY MOTTLE CLAY, LITTLE SAND, LITTLE GRAVEL, DAM			- 5	78	25 8	89	SS-3	2.75	10	7	12	31	40 2	7 16	11	13	A-6a (8)	$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$
721-300				6	9 8	29	100	SS-4	3.00	-	-	-	-	- -	-	-	17	A-6a (V)	
JECTS/1			876.7		5 7	8 24	100	SS-5	2.75	-	-	-	-	- -	-	-	16	A-6a (V)	

NOTES: NONE

ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; POURED 25 LB. HOLE PLUG; SHOVELED SOIL CUTTINGS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PI	ROJECT: FRA-CR3-06.79 'PE: ROADWAY D: 102047 SFN: 20/47	DRILLING FIRM / O SAMPLING FIRM / L DRILLING METHOD	OGGER: D : 3.25	LZ / T. SCHMITZ HSA / NQ2	HAMMER: CME AUTOMATIC CALIBRATION DATE: 5/20/16						STATION / OFFSET: 0+16, 22' F ALIGNMENT: ROUNDABOUT ELEVATION: 888.7 (MSL) LAT / LONG: 39.891426, -83					1(0.0 ft.	ATION IE 9-0-17 PAGE 1 OF 1	
AND NOTES B88.7 DEPTHS ROD	51						DEC		-										BACK	
Bit TAMO LITTLE GRAVEL CONTAINS ROOTS, SLIGHTLY B87.7 1 1 2 6 7 SS-1 0.25 -						RQD	-						· ·	ŕ –				wc		FILL
0 0	_ s	OME SAND, LITTLE GRAVEL; CONTAINS	ROOTS, SLIGHTLY	887.2		1 5	67	SS-1	0.25	-	-	-	-	-	-	-	-	27	A-6a (V)	
Bit Prossible Fill Add (b) Add (c)	RAB.	0.0'-1.5', MODERATELY ORGANIC (LOI = OFT TO MEDIUM STIFF, BROWN, CLAY , \$	4.34%)	885.7		2	67	SS-2	0.50	1	3	9	27	60	43	20	23	26	A-7-6 (14)	<1 1 < L
MOIST MOIST STIFF OSOM AND GRAY SILTY CLAY, UTLE TO SOME SAND, TRACE GRAVEL; CONTAINS ROCK FRAGMENTS, DAMP @8.5-10.0', CONTAINS ROOT HAIRS.	E T	O MOIST [POSSIBLE FILL]				3 1	3 78	SS-3	1.00	2	7	12	33	46	29	16	13	17	A-6a (9)	
TIFF TO VERY STIFF, BROWN AND GRAV, SILTY CLAY, UTLE TO SOME SAND, TRACE TO LITTLE GRAVEL; CONTAINS ROCK FRAGMENTS, DAMP @8.5-10.0, CONTAINS ROOT HAIRS. 878.7 EOB 878.7 EOB 10 878.7 EOB 10 10 10 10 10 10 10 10 10 1	ġ_ M	IOIST		882.7		4		SS-4	1.00	-	-	-	-	-	-	-	-	15	A-6a (V)	
@8.5-10.0; CONTAINS ROOT HAIRS. 9 1 <t< td=""><td>STS/172</td><td>TIFF TO VERY STIFF, BROWN AND GRAY ITTLE TO SOME SAND, TRACE TO LITTLE</td><td>, SILTY CLAY,</td><td></td><td>└ └ └</td><td>6 2</td><td>5 78</td><td>SS-5</td><td>2.00</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>15</td><td>A-6b (V)</td><td>7 LV 7 L</td></t<>	STS/172	TIFF TO VERY STIFF, BROWN AND GRAY ITTLE TO SOME SAND, TRACE TO LITTLE	, SILTY CLAY,		└ └ └	6 2	5 78	SS-5	2.00	-	-	-	-	-	-	-	-	15	A-6b (V)	7 LV 7 L
	_			878 7			5 100	SS-6	3.00	-	-	-	-	-	-	-	-	9	A-6b (V)	
	Г.GDT - 8/2/17 14:18 - S:WEP IVGI																			

	DRILLING FIRM / OPERATOR: DLZ / K. CONRAD DRILL RIG: CME 75-KC-77 STATION / OFFSET: SAMPLING FIRM / LOGGER: DLZ / T. SCHMITZ HAMMER: CME AUTOMATIC ALIGNMENTPROPOSE									,		D 010	ATION ID)-0-17					
PID: 102047 SFN: [DRILLING METHOD:	3.25"	HSA / NQ2	CALIBRATION DATE: 2/22/17						ELEVATION: 892.1 (MSL) EOB: 8.5								PAGE
START: <u>2/28/17</u> END: <u>2/28/17</u> S	Sampling Method:		SPT	ENEF	ENERGY RATIO (%): 95.3					LAT / LONG: 39.891316, -83.							15	1 OF 1
MATERIAL DESCRIPTIO		ELEV.	SPT/	N ₆₀		SAMPLE	I F		GRADATION (%)			ATTERBERG				ODOT CLASS (GI)	BACK	
		892.1	DEPTHS	RQD	60	(%)	ID	(tsf)	GR	CS	FS	SI CL	. LL	PL	PI	WC	CLASS (GI)	FILL
ASPHALT CONCRETE PAVEMENT - 8"		891.1																
STIFF, BROWN AND GRAY MOTTLED, SILTY SAND, TRACE GRAVEL; CONTAINS ROCK F			_ 2 _	12 8 4	19	72	SS-1	1.50	0	2	4 :	34 60	37	18	19	20	A-6b (12)	
		888.1		3 4 7	17	89	SS-2	1.50	-	-	-		-	-	-	23	A-6b (V)	$\begin{array}{c} 1 > 1 \\ 1 > 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
VERY STIFF, BROWN AND GRAY, SANDY SI	ILT, "AND"		- 5 -	6 9 10	30	100	SS-3	2.50	5	9	14 3	32 40	26	16	10	14	A-4a (7)	
			- 6 -	12 12 14	41	100	SS-4	3.00	-	-	-		-	-	-	16	A-4a (V)	7 LV 7 L 7 X 7 X
		883.6	EOB 8 -	10 9 6	24	83	SS-5	2.50	-	-	-		-	-	-	15	A-4a (V)	
			200															

NOTES: NONE ABANDONMENT METHODS, MATERIALS, QUANTITIES: PLACED 0.5 BAG ASPHALT PATCH; POURED 25 LB. HOLE PLUG; SHOVELED SOIL CUTTINGS

TYPE: ROAL	CR3-06.79 DWAY	DRILLING FIRM / (SAMPLING FIRM /			DLZ / K. CONRAD LZ / T. SCHMITZ	-	DRILL RIG: CME 75-KC-77 HAMMER: CME AUTOMATIC								SET:				RT. NROA	EXPLOR/ B-011	
PID: 102047 SFN:		DRILLING METHO	D:		HSA / NQ2			ON DA	ATE: 2	/22/17					891.0					.0 ft.	PAG
START: <u>2/28/17</u> EN		SAMPLING METHO	OD:		SPT							LAT /							3.153396		1 OF
MA	TERIAL DESCRIPT AND NOTES	ION		ELEV. 891.0	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	ID SAMPLE	(tsf)	GR	GRAD cs	FS	SI (%) CL		ERBE	PI	wc	ODOT CLASS (GI)	BAC
TOPSOIL - 2"				\890.8/	_	1					OIN										****
@0.0'-1.5', HIGHLY ORG					- 1 -	1	3	56	SS-1	0.25	-	-	-	-	-	-	-	-	33	A-7-6 (V)	
SOFT TO MEDIUM STIF TRACE SAND, CONTAIN FRAGMENTS, SEVERAL	IS ROOTS, LARGE	ROCK		888.0		WOH 2 5	11	50	SS-2	1.00	0	2	7	27	64	50	19	31	25	A-7-6 (18)	
STIFF TO VERY STIFF, AND CLAY, TRACE SAN	BROWN AND GRAY	Y MOTTLED, SILT			- 3 - - - 4 -	3 5 6	17	83	SS-3	1.75	9	3	6	29	53	33	20	13	18	A-6a (9)	7 LV 7 > N
					- 5 -	5 16 18	54	50	SS-4	3.00	-	-	-	-	-	-	-	-	18	A-6a (V)	7 L 7 J) 7 J)
@6.0'-7.5', GRAYISH BR	OWN.				- 6 - - - 7 -	10 8 8	25	100	SS-5	2.50	-	-	-	-	-	-	-	-	15	A-6a (V)	7 L 7 X 7 X 7 L
@7.5'-9.0', BROWN, CO	NTAINS LARGE RC	OCK FRAGMENTS.		882.0	- 8 -	8 10 9	30	56	SS-6	2.50	-	-	-	-	-	-	-	-	12	A-6a (V)	1<

ABANDONMENT METHODS, MATERIALS, QUANTITIES: POURED 25 LB. HOLE PLUG; SHOVELED SOIL CUTTINGS

	J.Z	PROJEC	T NAME		Norton Rd.	. RAB	Р	ROJECT NO	Э.	1721-3001.00) SHEET	1 OF 2
Sulfate Con	tent Report	CLIENT		OHM]	PROCEDUR	.E Su	pplement 11	22 C	OMP. BY	BV D	ATE 3/14/2017
Darina Ma	Comula No	Denth	Initial	Can No.	Can No.	Bottle No.	Beaker No.	Reading	gs w/Dilution	n of 1/20	Average	Actual (ppm)
Boring No.	Sample No.	Depth	Can No.	Weight	Weight	Bottle No.	Beaker INO.	1	2	3	(ppm)	(Avg x 20)
B-001-0-17	S-2	2.5'-4.0'	449	293	356	- 21	1014	0	0	0	0	0
D-001-0-1/	5-2	2.3 -4.0	449	20.40	20.12	21	1014	0	0	0	0	0
B-002-0-17	S-1	1.0'-2.5'	439	328	215	- 15	1006	6	6	7	6	127
D-002-0-1 /	5-1	1.0-2.5	439	20.18	20.77	15	1000	0	0	/	0	127
B-003-0-17	S-2	1.5'-3.0'	446	245	327	- 18	1013	7	7	7	7	140
D-003-0-1 /	5-2	1.5-5.0	440	20.10	20.81	10	1013	/	/	/	7	140
B-004-0-17	S-1	1.5'-3.0'	440	270	373	- 9	1016	4	4	4	4	80
D-004-0-17	5-1	1.5-5.0	440	21.16	20.91	7	1010	4	ť	4	+	80
B-005-0-17	S-2	1.5'-3.0'	458	279	243	- 5	1010	10	10	10	10	200
D-003-0-1 7	5-2	1.5-5.0	430	20.73	21.57	5	1010	10	10	10	10	200
B-006-0-17	S-1	0.0'-1.5'	464	361	297	- 7	10013	0	0	0	0	0
D-000-0-1 7	5-1	0.0-1.5	404	20.90	20.49	/	10015	0	0	U	0	0
B-007-0-17	S-2	3.0'-4.5'	570	223	364	- 22	1009	3	4	4	4	73
D -007-0-17	5-2	5.0-4.5	570	20.37	20.62		1007	5	т	т 	т	15
B-008-0-17	S-1	1.0'-2.5'	2	241	268	- 8	1005	4	4	5	4	87
D 000 0 17	51	1.0 2.5	2	20.37	20.50	0	1005	-	-	5	Т	67
B-009-0-17	S-2	1.5'-3.0'	545	241	268	- 16	1002	6	6	6	6	120
5 007 0 17	52	1.5 5.0	5-15	20.37	20.50	10	1002	Ŭ	0	Ŭ	0	120
B-010-0-17	S-1	1.0'-2.5'	SH	281	276	20	Р	3	3	3	3	60
D-010-0-1/	5-1	1.0-2.3	511	20.80	20.30	20	1	5		5		00

Remarks

	LZ Itent Report		T NAME	OHM	Norton Rd.	RAB PROCEDUR		ROJECT NO		1721-3001.0		2 OF 2 ATE 3/14/2017
Boring No.	Sample No.	Depth	Initial Can No.	Can No.	Can No.	Bottle No.	Beaker No.		gs w/Dilutior		Average	Actual (ppm)
B-011-0-17	S-2	1.5'-3.0'	526	Weight 335	Weight 394	- 14	1011	1 7	2 8	3 7	(ppm) 7	(Avg x 20) 147
				20.02	20.00	-						
						-						
						-						
						-						

Remarks

Repor	t on Lo (AASHTO	oss of Ignition	
DLZ Project No.: 1721-3 Client: OHM Project Name: Norton Date: 3/14/2017	001.00 Rd RAB	'	07-0-17 S-2 0'-4.5'
Muffle Furnace Crucible ID:	Y	Container No Wet Wt. + Containe	000 50
Muffle Furnace Temperature	455 ± 10°C	Dry Wt. + Containe	400.00
Mass of crucible & oven dry soil (A)		Wt. of Containe	E0.44
Mass of crucible (B)		Dry Wt. of Sc	oil 134.97
Mass of oven dry soil (C)	23.64	Moisture Content (%	b) 27.0
Mass of sample & crucible after ashed in muffle furnace (D) Mass of crucible (B) Mass of ashed soil sample (E) Loss on Ignition = <u>C - E</u> * 100=	96.26 73.95		
C			

Repor	t on Lo (AASHTO	DSS of Ignition	
DLZ Project No.: 1721-3 Client: OHM Project Name: Norton Date: 3/14/2017	001.00 Rd RAB	Boring No Sample No Depth	B-009-0-17 S-1 0.0'-1.5'
Muffle Furnace Crucible ID:	403	Contain Wet Wt. + Cor	160.40
Muffle Furnace Temperature	455 ± 10°C	Dry Wt. + Cor	407.00
Mass of crucible & oven dry soil (A)		Wt. of Cor	
Mass of crucible (B)		Dry Wt.	
Mass of oven dry soil (C)	35.95	Moisture Conte	
Mass of sample & crucible after ashed in muffle furnace (D) Mass of crucible (B) Mass of ashed soil sample (E) Loss on Ignition = <u>C - E</u> * 100=			
C	7.07		

Repor	t on Lo (AASHTO	DSS of Ignition	
DLZ Project No.: 1721-3 Client: OHM Project Name: Norton Date: 3/14/2017	001.00 Rd RAB	Boring No. <u>в-011</u> Sample No. <u>s</u> - Depth <u>0.0'-</u>	1
Muffle Furnace Crucible ID:	417	Container No Wet Wt. + Container	269 153.56
Muffle Furnace Temperature	455 + 10°C	Dry Wt. + Container	134.25
Mass of crucible & oven dry soil (A)		Wt. of Container	63.32
Mass of crucible (B)	101.78	Dry Wt. of Soil	70.93
Mass of oven dry soil (C)	15.17	Moisture Content (%)	27.2
Mass of sample & crucible after ashed in muffle furnace (D) Mass of crucible (B) Mass of ashed soil sample (E) Loss on Ignition = <u>C - E</u> * 100= C	114.63 101.78 12.85 15.29		

C 1	. b a w a d a	Analysia	6	Slobal O	ptions	5							Classific	ation C	Counts	ov Sai	nple							Surface	Class	% Bo	orings	% Si	urface	Rig ER
	-	e Analysis	320	R&R	N	ю	R	1a	1b	3			2-5 2-6	2-7	4a	4b	5	6a	6b		7-6	8a	8b	2-5 0		N _{60L} <=	5 18%	64	4%	A 95
V.	13.00	01/15/16	206	LS		tion tion	0	1 2%	0	0	0	0	0 1 2%	0	5 11%	0	0	13 30%	11 25%	0	13 30%	0	0	4b 0 5 0		<=1(>=2() 64%) 18%	0%	64%	B 94 C
Desi		6	206	Depth		2	0%	270			5%	6	270					0070	95%)	0070			7-5 0		M+	100%	UC @	Surface	D
CBR		•											N ₆₀ N ₆₀			ΡI		Clay		м	Морт		GI	7-6 2 8a 0	18%	R	0%	Und	lercut	E F
Total	Borings	11							Avera	age			17.6 11.		Ī	19.0		51.7			15.0		10.21	8b 0				1	7.1	G
PID	4 au	25596		00.70			h		Maxir				54 2			31 10	34 3	65	94	33.3	19		18	R 0					33 12	Н
Loca	tion	Borin	RA-CR3 a	3-06.79		1	Subg	rade	Minim		dard Pe	enetra	tion	3 26	Physic		v	39 istics	3	5.3 Moist	6 ture	C	ass	Sulfate		Pro	olem		ercuts	Analysis /
			0			Cut											%	%	Р			Ohio	1			w/	w/	UC	UC	Comments
#	B #	Boring Loca	ition	Depth	То	Fill	Depth	То	n ₂	n ₃	Ν	Rig	N ₆₀ N ₆₀	LL	PL	ΡI	Silt	Clay	200	М	M _{OPT}	DOT	GI			Class	MN	Class	MN	
1	В			1	2.5	0.0	1.0	2.5	9	8	17	A	27	NP	NP	NP	3		3	5	6	1a	0			1				
	001-0			2.5	4		2.5	4.0	5	4	9		14						-		14	6a	8	0			MN			
	17			4 5.5	5.5 7		4.0 5.5	5.5 7.0	3 7		7 17		11 27 1	44	17	27	34	54	88	25 14	18 18	7-6 7-6	16				Ν		12	
2	В			1	2.5	0.0	1.0	2.5	8	9	17	А	27	30		14	27	40	67	16	14	6a	8	127						
	002-0 17			2.5 4	4 5.5		2.5 4.0	4.0 5.5	7 7		13 14		21 22	26	16	10	31	40	71	15 14	11 10	4a 4a	7 5							
	17			5.5	5.5 7		5.5	7.0	7		14		24 2	1						14	10	4a 4a	5							
3	В			0	1.5	6.0	6.0	7.5	2	2	4	В	6	45		05	00	04	00	32	16	6b		140			N		18	
	003-0 17			1.5 3	3 4.5		7.5 9.0	9.0 10.5	2		5 4		8 6	45 39		25 20	29 28	61 57	90 85	27 25	18 16	7-6 6b					N N		12 18	
				4.5	6		10.5	12.0	1	3	4	-	-	6			-			21	16	6b					Ν		18	
4	B 004-0			1.5 3	3 4.5	4.5	6.0 7.5	7.5 9.0	4		7 4	A	11 6	31	17	14	32	44	76	21 23	14 14	6a 6a		80			N N		12 18	
	17			4.5	6		9.0	10.5	3		7		11	49	20	29	27	65	92	29	18	7-6					N		12	
5	В			6 0	7.5 1.5	0.0	10.5 0.0	12.0 1.5	4		9 5	В	14 8	6						21 24	18 16	7-6 6b	10		_		N		12	
5	005-0			1.5	3	0.0	1.5	3.0	2		12	D	19	34	18	16	30	47	77	18	16	6b	10	200			IN		12	
	17			3	4.5		3.0	4.5	10		24		38				~ ~			13	16	6b	10							
6	В			4.5 0	6 1.5	0.0	4.5	6.0 1.5	13 2		31 6	A	49 10	3 30	17	13	31	39	70	14 24	14 16	6a 6b	8 10	0			N		12	
	006-0			1.5	3		1.5	3.0	3		6		10	40		20	23	40	63	22	16	6b	10				Ν		12	
	17			3 4.5	4.5 6		3.0 4.5	4.5 6.0	3 4		6 9		10 14 1	48	22	26	25	63	88	29 23	19 18	7-6 7-6	16 14				N MN		12 12	
7	В			1	2.5	0.0	1.0	2.5	4	3	7	А	11							14	16	6b	10				Ν		12	
	007-0 17			2.5 4	4 5.5		2.5 4.0	4.0 5.5	2 4		8 7		13 11	42	19	23	26	62	88	27 12	18 10	7-6 2-6	14 2	73			MN N		12 12	
				5.5	7		5.5	7.0	3	3	6		10 1							24	14	6a					Ν		12	
8	B 008-0			1 2.5	2.5 4	2.0	3.0 4.5	4.5 6.0	7 6	8 9	15 15	Α	24 24	44	21	23	22	59	81	26	18 18	7-6 7-6	14 14	87			М			
	17			2.5 4	4 5.5		4.5 6.0	6.0 7.5	6 8		15		24 25	27	16	11	31	40	71	13	18	7-6 6a	14							
	5			5.5	7	4.0	7.5	9.0	8		18	D	29 2	4						17	14	6a	-						0.1	
9	B 009-0			0 1.5	1.5 3	-1.0	-1.0 0.5	0.5 2.0	1	2 2	3 4	В	5 6	43	20	23	27	60	87	27 26	14 18	6a 7-6	8 14	120			N N		21 18	
	17			3	4.5		2.0	3.5	3	5	8		13	29		13	33	46		17	14	6a	9							
10	В			4.5	6 2.5	0.0	3.5 1.0	5.0 2.5	4	4	8 12	А	13 19	5 37	18	19	34	60	94	15 20	14 16	6a 6b	8 12	60						
.0	010-0			2.5	4	0.0	2.5	4.0	4	7	11		17						-	23	16	6b	10	00			М			
	17			4 5.5	5.5 7		4.0 5.5	5.5 7.0	9 12		19 26		30 41 1	26	16	10	32	40	72	14 16	11 10	4a 4a	7				м			
11	В			0	1.5	3.3	3.3	4.8	1	1	20	A	3							33	18	7-6	14				N		33	
	011-0			1.5	3		4.8	6.3	2		7		11 17	50 33		31	27 29	64	91 92	25	18 15	7-6	18	147			Ν		12	
	17			3 4.5	4.5 6		6.3 7.8	7.8 9.3	5 16		11 34		17 54	33	20	13	29	53	82	18 18	15 14	6a 6a								
				4.5	6		7.8	9.3	16	18	34		54	3						18	14	6a								

		Analusia	6	Slobal O	ption	5							Classific	ation C	ounts I	ov Sai	nple							Surface	Class	% Bo	rings	% Si	urface	Rig ER
	-	e Analysis	320	R&R	N	ю	R	1a	1b	3			2-5 2-6	2-7	4a	4b	5	6a	6b		7-6	8a	8b	2-5 0		N _{60L} <= 5	5 18%	64	1%	A 95
V.	13.00	01/15/16	206			tion	0	1	0	0	0	0	0 1	0	5	0	0	13	11	0	13	0	0	4b 0 5 0			64%	0%	64%	B 94
Desi	an		206	LS Depth		tion 2	0%	2%			5%	6	2%		11%			30%	25% 95%		30%			5 0 7-5 0		>=20 M+	18% 100%	UC @	Surface	C D
CBR		6					070				0,								0070	<u>,</u>				7-6 2	18%	R	0%		rcut w/	E
												F	N ₆₀ N ₆₀	-	F	PI		Clay		М			GI	8a 0		•			grid	F
Total PID	Borings	11 25596							Avera Maxii			-	17.6 11.0 54 24		22	19.0 31	34	51.7 65		20.3 33.3			10.21 18	8b 0 R 0					4.1 24	G H
Loca	tion		RA-CR3	3-06.79			1		Minin			-	3 3	4 50 3 26		10	34	39	94 3	5.3	19 6		0	K U					2	п
		Borin					Subg	rade			dard P	enetra	tion	-	Physic	al Cha	-			Mois	ture	CI	ass	Sulfate		Prob	lem		ercuts	Analysis /
						Cut											%	%	Р			Ohio				w/	w/	UC	UC	Comments
#	B #	Boring Loca	ation	Depth	То	Fill	Depth	То	n ₂	n ₃	Ν	Rig	N ₆₀ N ₆₀	LL	PL	ΡI	Silt	Clay	200	М	M _{OPT}	DOT	GI			Class	MN	Class	MN	
1	Р			1	2.5	0.0	1.0	25	0	0	17	٨	27	NP	NP	ND	2		3	E	6	10	0			ı ———		I 		
	B 001-0			1 2.5	2.5 4	0.0	1.0 2.5	2.5 4.0	9 5		17 9	A	27 14	NP	NP	NP	3		3	5	6 14	1a 6a	0 8	0			MN			
	17			4	5.5		4.0	5.5	3				11	44	17	27	34	54	88	25	18	7-6	16	Ŭ			N		12	
	_			5.5	7		5.5	7.0	7				27 1							14	18	7-6								
2	B 002-0			1 2.5	2.5 4	0.0	1.0 2.5	2.5 4.0	8 7		17 13	A	27 21	30 26		14 10	27 31	40 40	67 71	16 15	14 11	6a 4a	8 7	127						
	17			2.5 4	4 5.5		2.5 4.0	4.0 5.5	7				21	20	10	10	51	40	11	15	10	4a 4a	7 5							
				5.5	7		5.5	7.0	7	8	15		24 2 ⁻	1						14	10	4a	5							
3	В			0	1.5	6.0	6.0	7.5	2			В	6							32	16	6b		140			N		12	
	003-0 17			1.5 3	3 4.5		7.5 9.0	9.0 10.5	2				8 6	45 39		25 20	29 28	61 57	90 85		18 16	7-6 6b					N N		12 12	
	17			4.5	4.J 6		10.5	12.0	1	3			6 (15	20	20	57	00	21	16	6b					N		12	
4	В			1.5	3	4.5	6.0	7.5	4	3	7	Α	11	31	17	14	32	44	76	21	14	6a		80			Ν		12	
	004-0			3	4.5		7.5	9.0	2				6							23	14	6a					N		12	
	17			4.5 6	6 7.5		9.0 10.5	10.5 12.0	3 4				11 14 (49	20	29	27	65	92	29 21	18 18	7-6 7-6					Ν		12	
5	В			0	1.5	0.0	0.0	1.5	2		5	В	8	5						24	16	6b	10				Ν		12	
	005-0			1.5	3		1.5	3.0	3				19	34	18	16	30	47	77		16	6b	10	200						
	17			3	4.5 6		3.0	4.5	10				38 49 8	20	47	10	24	20	70	13	16	6b	10							
6	В			4.5 0	1.5	0.0	4.5	6.0 1.5	13 2		6	А	49 a 10	3 30	17	13	31	39	70	14 24	14 16	6a 6b	8 10	0			N		12	
-	006-0			1.5	3		1.5	3.0	3		6		10	40	20	20	23	40	63		16	6b	10	-			N		12	
	17			3	4.5		3.0	4.5	3		6		10	48	22	26	25	63	88		19	7-6	16				N		12	
7	В			4.5 1	6 2.5	0.0	4.5	6.0 2.5	4		9 7	А	<u>14 10</u> 11	5						23 14	18 16	7-6 6b	14 10				MN N		12 12	
,	007-0			2.5	4	0.0	2.5	4.0	2		8		13	42	19	23	26	62	88		18	7-6	14	73			MN		12	
	17			4	5.5		4.0	5.5	4				11							12	10	2-6	2				Ν		12	
0	В			5.5 1	7 2.5	2.0	5.5 3.0	7.0 4.5	3	3	6 15	A	10 10 24	2 44	21	23	22	59	81	24 26	14 18	6a 7-6	14	87			N M		12	
8	в 008-0			2.5	2.5 4	2.0	3.0 4.5	4.5 6.0	6			A	24 24	44	21	23	22	59	01	20	18	7-6 7-6	14	07			IVI			
	17			4	5.5		6.0	7.5	8	8	16		25		16	11	31	40	71	13	14	6a								
				5.5	7	1.6	7.5	9.0	8		18	-	29 24	4						17	14	6a								
9	B 009-0			0 1.5	1.5 3	-1.0	-1.0 0.5	0.5 2.0	1	2 2	3 4	В	5 6	43	20	23	27	60	87	27 26	14 18	6a 7-6	8 14	120			N N		15 12	
	17			3	4.5		2.0	3.5	3				13	29		13	33	46			14	6a	9	120					12	
				4.5	6		3.5	5.0	4	4	8		13	5						15	14	6a	8							
10				1	2.5	0.0	1.0	2.5	8		12	Α	19 17	37	18	19	34	60	94	20	16	6b	12	60			м			
	010-0 17			2.5 4	4 5.5		2.5 4.0	4.0 5.5	4	•	11 19		17 30	26	16	10	32	40	72	23 14	16 11	6b 4a	10 7				М			
				5.5	7		5.5	7.0	12		26		41 1							16	10	4a					М			
11				0	1.5	3.3	3.3	4.8	1		2	Α	3				c -	<i>c</i> .		33	18	7-6	14				N		24	
	011-0 17			1.5 3	3 4.5		4.8 6.3	6.3 7.8	2 5		7 11		11 17	50 33		31 13	27 29	64 53	91 82	25 18	18 15	7-6 6a	18	147			Ν		12	
	17			3 4.5	4.5 6		0.3 7.8	7.0 9.3	5 16					3	20	15	29	55	02	18	15	6a								
· · · · ·							-																-			· •			·	

c .		Analysia	G	lobal O	ptions	3							Classific	ation C	ounts	by Sai	nple							Surface Cla	ass	% Bor	ings	% St	irface	Rig ER
	-	e Analysis	320	R&R	Op	tion	R	1a	1b	3	3a 2	2-4	2-5 2-6	2-7	4a	4b	5	6a	6b	7-5		8a	8b	2-5 0		N _{60L} <= 5		60)%	A 95
V.	13.00	01/15/16	206	CS LS		tion tion	0	1	0	0	0	0	0 1 5%	0	3 15%	0	0	4 20%	6 30%	0	5 25%	0	0	4b 0 5 0			60% 20%	0%	60%	B 94 C
Desi	an	•	206	Depth			0%	5%			10%	,	5%		15%			20%	30% 90%		25%			7-5 0		M+	100%	UC @	Surface	D
CBR		6																						7-6 0		R	0%		ercut	E
Tata	Borings	5							A	~ ~		Б	N ₆₀ N ₆₀₁ 18.8 12.0		г	PI 18.6	г	Clay 48.1	г	M 18.2			GI 9.29	8a 0 8b 0					2.0	F G
PID	Bonngs	5 25596							Avera Maxir			-	49 2		22	18.6	34	48.1 63			14.5		9.29	8b 0 R 0					2	H
Loca	tion		Norton I	Road]		Minin				8 8			10	3	39	3	5.3	6		0						2	
		Borin	g				Subg	rade		Stan	dard Pe	netra	tion		Physic	al Cha				Mois			ass	Sulfate		Prob			ercuts	Analysis /
	D.#	Devices Laws		Denth	τ.	Cut	Denth	т.		-							%	%	P			Ohio				w/ Class	w/ MN	UC Class	UC MN	Comments
#	B #	Boring Loca	tion	Depth	10	Fill	Depth	10	n ₂	n ₃	NF	Rig	N ₆₀ N ₆₀₁	LL	PL	ΡI	Silt	Clay	200	М	NOPT	DOT	GI			Class	IVIIN	Class	IVIIN	
1	В			1	2.5	0.0	1.0	2.5	9	8	17	A	27	NP	NP	NP	3		3	5	6	1a	0							
	001-0			2.5	4		2.5	4.0	5		9		14								14	6a	8	0			MN			
	17			4 5.5	5.5 7		4.0 5.5	5.5 7.0	3 7		7 17		11 27 1 [.]	44	17	27	34	54	88	25 14	18 18	7-6 7-6	16				N		12	
2	В			5.5 1	2.5	0.0	1.0	2.5	8	9		A	27 1	30	16	14	27	40	67	14	14	6a	8	127						
	002-0			2.5	4		2.5	4.0	7	6	13		21	26			31	40	71	15	11	4a	7							
	17			4	5.5		4.0	5.5	7		14		22							14	10	4a	5							
3	В			5.5 0	7	0.0	5.5 0.0	7.0	7		15 5	В	<u>24 2'</u> 8							14 24	10 16	4a 6b	10				N		12	
-	005-0			1.5	3		1.5	3.0	3		12	-	19	34	18	16	30	47	77	18	16	6b	10	200					.=	
	17			3	4.5		3.0	4.5	10		24		38							13	16	6b	10							
4	В			4.5 0	6 1.5	0.0	4.5	6.0 1.5	13 2		31 6	A	49 8 10	30	17	13	31	39	70	14 24	14 16	6a 6b	8 10	0			N		12	
-	006-0			1.5	3	0.0	1.5	3.0	3		6	~	10	40	20	20	23	40	63		16	6b	10	Ū			N		12	
	17			3	4.5		3.0	4.5	3		6		10	48	22	26	25	63	88	29	19		16				Ν		12	
5	В			4.5 1	6 2.5	0.0	4.5	6.0 2.5	4	5	9	A	<u>14 10</u> 11)						23 14	18 16	7-6 6b	14 10				MN N		12 12	
5	007-0			2.5	2.5 4	0.0	2.5	2.5 4.0	2		8	A	13	42	19	23	26	62	88	27	18	7-6	14	73			MN		12	
	17			4	5.5		4.0	5.5	4	3	7		11			-				12	10	2-6	2				Ν		12	
				5.5	7	0.0	5.5	7.0	3	3		^	10 10)						24	14	6a					Ν		12	
6						0.0						A																		
7						0.0						^																		
1						0.0						A																		
						2.0						٨																		
8						2.0						A																		
-												-																		
9						-1.0						B																		
10						0.0						A																		
11						3.3						A				T			T		T				T					

C	. b awa al a	Analysia	6	Slobal O	ptions	s							Classific	ation C	ounts	by Sai	nple							Surface Cla	ass	% Bor	ings	% Si	irface	Rig ER
	-	e Analysis	320	R&R	Ор	tion	R	1a	1b	3	3a		2-5 2-6	2-7	4a	4b	5	6a	6b	7-5		8a	8b	2-5 0		N _{60L} <= 5		60)%	A 95
V.	13.00	01/15/16	206	LS		tion	0	1 5%	0	0	0	0	0 1 5%	0	3 15%	0	0	4 20%	6 30%	0	5 25%	0	0	4b 0 5 0			60% 20%	0%	60%	B 94 C
Desi	gn	6	206	Depth			0%	570			10%	6	570		1370			2070	90%		2370			7-5 0		M+	100%	UC @	Surface	D
CBR		O														ы		<u> </u>		N4 N			0	7-6 0		R	0%	Under	cut w/	E
Total	Borings	5							Avera	nde		Г	N ₆₀ N ₆₀ 18.8 12.	5		PI 18.6	Г	Clay 48.1	I	M 18.2			GI 9.29	8a 0 8b 0					grid 2.0	F G
PID	Bonngo	25596					_		Maxir	num			49 2	1 48		27	34	63	88	28.7	19		16	R 0					2	H
Loca	tion		Norton	Road		1			Minin				8			10	3	39	3	5.3	6		0						2	
		Borin	g			Cut	Subg	rade		Stan	dard Pe	enetra	ition		Physic	al Cha	aracter %	istics %	Р	Moist		CI Ohio	ass	Sulfate		Prob w/	em w/	Unde	ercuts UC	Analysis / Comments
#	B#	Boring Loca	ation	Depth	То	Cut Fill	Depth	То	n ₂	n ₃	N	Rig	N ₆₀ N ₆₀	LL	PL	ΡI	% Silt			м		DOT	GI			Class	MN	Class	MN	Commente
		g							2	5								,			011	-	•.							
1	В			1	2.5	0.0	1.0	2.5	9			Α	27	NP	NP	NP	3		3	5	6	1a	0							
	001-0 17			2.5 4	4 5.5		2.5 4.0	4.0 5.5	5 3				14 11	44	17	27	34	54	88	25	14 18	6a 7-6	8 16	0			MN N		12	
	17			5.5	7		5.5	7.0	7		17		27 1			21	04	54	00	14	18	7-6	10						12	
2	В			1	2.5	0.0	1.0	2.5	8		17	Α	27	30		14	27	40	67	16	14	6a	8	127						
	002-0 17			2.5 4	4 5.5		2.5 4.0	4.0 5.5	7				21 22	26	16	10	31	40	71	15 14	11 10	4a 4a	7 5							
				5.5	7		5.5	7.0	7				24 2	1						14	10	4a	Ũ							
3	B			0	1.5	0.0	0.0	1.5	2			В	8		10			47		24	16	6b	10	200			N		12	
	005-0 17			1.5 3	3 4.5		1.5 3.0	3.0 4.5	3 10				19 38	34	18	16	30	47	77	18 13	16 16	6b 6b	10 10	200						
				4.5	6		4.5	6.0	13					3 30	17	13	31	39	70	14	14	6a	8							
4	В			0	1.5	0.0	0.0	1.5	2		6	Α	10					40		24	16	6b	10	0			N		12	
	006-0 17			1.5 3	3 4.5		1.5 3.0	3.0 4.5	3				10 10	40 48		20 26	23 25	40 63	63 88	22 29	16 19	6b 7-6	10 16				N N		12 12	
	17			4.5	6		4.5	6.0	4				14 10		~~~	20	20	00	00	23	18	7-6	14				MN		12	
5	В			1	2.5	0.0	1.0	2.5	4		7	Α	11							14	16	6b	10	70			N		12	
	007-0 17			2.5 4	4 5.5		2.5 4.0	4.0 5.5	2				13 11	42	19	23	26	62	88	27 12	18 10	7-6 2-6	14 2	73			MN N		12 12	
				5.5	7		5.5	7.0	3				10 10	D						24	14	6a	-				N		12	
6						0.0						Α																		
7						0.0						A																		
												٨																		
8						2.0						A																		
						4.0	L					D																		
9						-1.0						В																		
10						0.0	L					٨																		
10						0.0						A																		
14						2.2						٨																		
11						3.3						A																		
																												1		

Su	bgrade	Analysis		Global O R&R	ptions	s tion	R	1a	1b	3	20.00		Classifica 2-5 2-6			y Sa 4b		6a	6b	7-5	7-6	8a	8b	Surface 2-5 0	Class	<mark>% Bc</mark> N ₆₀₁ <= ₹		% Si	urface 3%		ER 95
	13.00	01/15/16	206		Opt	tion	0	0	0	0	<u>3a 2</u> 0		0 0	0	2	0	0	4	2	0	4	0	0	2-5 0 4b 0 5 0		<=1(33% 33% 33%	0%	33%		95 94
Desig CBR	In	5	206	Depth			0%				0%				17%			33%	17% 100%	, D	33%			7-5 0	070/	M+	100%	UC @	Surface	DE	
-	Borings	-							A				N ₆₀ N _{60L} 24.5 14.7	1	F	РІ 17.8		Clay 52.7	Г	M 20.3	M _{OPT}		GI 12.71	8a 0	67%	R	0%		ercut 3.0	FG	
PID		3 25596	1	Deed			1		Avera Maxim	านm		4	54 24	50	21	31	34	64	94	33.3	18		12.71	8b 0 R 0				3	3	H	
Locat	ion	Borin	<mark>Johnson</mark> g	Road			Subg		Minim		lard Pe	netrat	3 3 ion			10 al Ch	22 aracter	40 istics		13.3 Mois	10 ture	CI	ass /	Sulfate		Prot	lem	Unde	33 ercuts	Analys	
#	В#	Boring Loca	ation	Depth	То	Cut Fill	Depth	То	n ₂	n ₃	N F	Rig I	N ₆₀ N _{60L}	LL	PL	ΡI	% Silt	% Clay	Р 200	М	M _{OPT}	Ohio DOT	GI			w/ Class	w/ MN	UC Class	UC MN	Comme	ents
1	B 008-0			1 2.5	2.5 4	2.0	3.0 4.5	4.5 6.0	7 6	8 9	15 15	A	24 24	44	21	23	22	59	81	26		7-6 7-6	14 14	87			М				
	17			2.5 4 5.5	5.5 7		6.0 7.5	7.5 9.0	8 8	8 10	16 18		24 25 29 24		16	11	31	40	71	13 17	14 14 14	6a	14								
2	B 010-0 17			1 2.5 4	2.5 4 5.5	0.0	1.0 2.5 4.0	2.5 4.0 5.5	8 4 9	4 7 10	11 19	A	19 17 30		18 16	19 10	34 32	60 40	94 72		16 16 11	6b 4a	12 10 7	60			м				
3	B 011-0 17			5.5 0 1.5 3	7 1.5 3 4.5	3.3	5.5 3.3 4.8 6.3	7.0 4.8 6.3 7.8	12 1 2 5	14 1 5 6	26 2 7 11	A	<u>41 17</u> 3 11 17	50 33	19 20	31 13	27 29	64 53	91 82	16 33 25 18	10 18 18 15	7-6 7-6	14 18	147			M N N		33 12		
4				4.5	6	0.0	7.8	9.3	16		34	A	54 3		20		20		02	18	14										
5						0.0						A																			
6						0.0						A																			_
7						0.0						A																			
8						0.0						A																			
9						0.0						A																			
10						0.0						A																			
11						0.0						A																			

Su	ibarade	e Analysis		Blobal O	ptions				41	0	0-		Classifica					0	01-	7.5	7.0	0 -	0h	Surface	Class		rings	% Si	Irface	Rig	ER
	13.00	01/15/16	206		Ор	tion tion	R 0	1a 0	1b 0	3 0	3a 2 0	<u>2-4</u> 0	2-5 2-6 0 0	0	2	4b 0	0	6a 4	2	7-5 0	7-6 4	8a 0	8b 0	2-5 0 4b 0			33%	0%	3% 33%	A B	95 94
Desi	gn	5	206	LS Depth		tion 	0%				0%				17%			33%	17% 100%	D	33%			5 0 7-5 0		M+) 33% 100%	UC @	Surface	C D	
CBR		-										_	N ₆₀ N _{60L}		_	ΡI		Clay	_		M _{OPT}		GI	7-6 2 8a 0	67%	R	0%	861	rcut w/ grid	E F	
Total PID	Borings	3 25596							Avera Maxim	ge num		-	24.5 14.7 54 24	50	21	17.8 31	34	52.7 64		20.3 33.3	18		12.71 18	8b 0 R 0					4.0 4	G H	
Loca	tion	Borin	Johnson a	Road			Subg		Minim		lard Pe	netra	3 3 tion			10 al Chi	22 aracter	40 istics	71	13.3 Mois	10 ture	CI	7 ass	Sulfate		Prot	lem		4 ercuts	Anal	lysis /
#	В#	Boring Loca	•	Depth	Та	Cut Fill	Depth		n				N ₆₀ N _{60L}	LL	PL		% Silt	%	P 200			Ohio DOT		Cundto		w/ Class	w/ MN	UC Class	UC MN		ments
#	-	Borning Loca								n ₃																01000		01000			
1	B 008-0			1 2.5	2.5 4	2.0	3.0 4.5	4.5 6.0	7 6	8 9	15	A	24 24	44		23		59	81		18		14 14	87			М				
	17			4 5.5	5.5 7		6.0 7.5	7.5 9.0	8 8	8 10	16 18		25 29 24		16	11			71	17	14 14	6a									
2	B 010-0			1 2.5	2.5 4	0.0	1.0 2.5	2.5 4.0	8 4	4 7	12 11	A	19 17	37	18	19	34	60	94	20 23	16 16	6b 6b	12 10	60			м				
	17			4 5.5	5.5 7		4.0 5.5	5.5 7.0	9 12	10 14	19 26		30 41 17		16	10	32	40	72	14 16	11 10		7				м				
3	B 011-0			0 1.5	1.5 3	3.3	3.3 4.8	4.8 6.3	1 2	1 5		A	3 11	50	19	31	27	64	91	33 25	18	7-6	14 18	147			N N		24 12		
	17			3 4.5	4.5 6		6.3 7.8	7.8 9.3	5 16	6	11 34		17 54 3	33	20	13		53	82	18 18	15 14	6a									
4				1.0	0	0.0	1.0	0.0	10	10		A	01 0							10		00									
5						0.0						A																			
6						0.0						A																			
7						0.0						A																			
8						0.0						A																			
9						0.0						A																			
10						0.0						A																			
11						0.0						A																			
																												1			

Su	ubarade	e Analysis		Blobal O								Classific	ation C				_					<u></u>	Surface (Class	% Boi			irface	Rig ER
	13.00	01/15/16	320 206		N	lo lo	R 0	1a 0	1b 0		8 <u>a 2-4</u> 0 0	2-5 2-6 0 0	2-7 0	4a 0	4b 0	5 0	6a 5	6b 3	7-5 0	7-6 4	8a 0	8b 0	2-5 0 4b 0			100%	10 0%	0% 100%	A 95 B 94
Desi	gn	6	206	LS Depth		tion 5	0%				0%						42%	25% 100%		33%			50 7-50		>=20 M+	0% 100%	UC @	Surface	C D
CBR		0										N ₆₀ N _{60L}			ΡI		Clay		М	M _{OPT}		GI	7-6 0 8a 0		R	0%	Und	ercut	E F
Total PID	Borings	3 25596							Averag Maxim			8.8 5.7 14 6	7		20.7 29		55.5 65		23.6 32.2		F	9.75 14	8b 0 R 0				17	'.0 1	G H
Loca	tion	25596	Rounda	about					Minimu	ım		5 5	i 29	16	13	27	44		14.6	14	-	8	•		l 		1	2	
		Borin	g	1		Cut	Subgr	rade		Standa	rd Pene	tration		Physic	al Ch	aracter		Р	Mois		Cla	ISS	Sulfate		Prob w/	lem w/	Unde UC	ercuts UC	Analysis / Comments
#	В#	Boring Loca	ation	Depth	То	Cut Fill	Depth	То	n ₂	n ₃	N Rig	N ₆₀ N _{60L}	LL	PL	ΡI	% Silt	% Clay		м	M _{OPT}	Ohio DOT	GI			Class	MN	Class	MN	Commente
1	В			0	1.5	6.0	6.0	7.5	2	2	4 B	6							32	16	6b		140			N		18	
	003-0 17			1.5 3	3 4.5		7.5 9.0	9.0 10.5	2 2	3 2	5 4	8 6	45 39	20 19	25 20	29 28	61 57	90 85	27 25	18 16	7-6 6b					N N		12 18	
				4.5	6	4.5	10.5	12.0	1	3	4	6 6	6						21	16	6b		00			Ν		18	
2	B 004-0			1.5 3	3 4.5	4.5	6.0 7.5	7.5 9.0	4 2	3 2	7 A 4	11 6	31	17	14	32	44	76	21 23	14 14	6a 6a		80			N N		12 18	
	17			4.5 6	6 7.5			10.5 12.0	3 4	4 5	7 9	11 14 6		20	29	27	65	92	29 21		7-6 7-6					N		12	
3	B 009-0			0	1.5 3	-1.0	-1.0 0.5	0.5	1	2	3 B 4	5		20	22	27	60	87	27 26	14 18	6a 7-6	8	120			N N		21 18	
	17			1.5 3 4.5	3 4.5 6		2.0	2.0 3.5 5.0	2 3 4	2 5 4	4 8 8	13	43 29	16	23 13	33	46	87 79	17	18 14 14	6a	14 9 8	120			IN		18	
4				4.5	0		3.5	5.0	4	4	8 A	13 5							15	14	6a	8							
5						0.0					Α																		
6						0.0					A																		
7						0.0					A																		
8																													
8						2.0					A																		
9						0.0					٨																		
9						0.0					A																		
10						0.0					A																		
						0.0					~																		
11						0.0					А																		
																											1		

			G	lobal O	ptions								Classifica	tion Co	ounts b	ov Sa	mple							Surface	Class	% Bo	rinas	% Si	irface	Rig ER
		e Analysis	320	R&R	N	lo	R	1a	1b			-4 2	2-5 2-6	2-7	4a	4b	5	6a		7-5		8a	8b	2-5 0		N _{60L} <= 5	5 33%	10	0%	A 95
V.	13.00	01/15/16	206			lo	0	0	0	0	0 (0	0 0	0	0	0	0	5	3	0	4	0	0	4b 0			100%	0%	100%	B 94
Desi	an		206	LS Depth		tion 5	0%				0%							42%	25% 100%	6	33%			5 0 7-5 0		>=20 M+	0%	UC @	Surface	C D
CBR	9	6	200	Dopti		•	070				070								1007	0				7-6 0		R	0%		rcut w/	E
		-											N ₆₀ N _{60L}		-	ΡI	· -	Clay	r		M _{OPT}		GI	8a 0					grid	F
Total PID	Borings	3 25596							Avera Maxim			_	8.8 5.7 14 6		20	20.7 29	33	55.5 65		23.6 32.2	15.8 18		9.75 14	8b 0 R 0					3.0 5	G H
Loca	tion	20090	Rounda	about			1		Minim			_	5 5		16	13	27	44		32.2 14.6			14	K U]			2	
		Borin					Subg				ard Per	netrat				al Ch	aracter			Mois		CI	ass	Sulfate		Prob	lem		ercuts	Analysis /
						Cut											%	%	Р			Ohio				w/	w/	UC	UC	Comments
#	B #	Boring Loca	ition	Depth	То	Fill	Depth	То	n ₂	n ₃	N R	lig I	N ₆₀ N _{60L}	LL	PL	ΡI	Silt	Clay	200	Μ	M _{OPT}	DOT	GI			Class	MN	Class	MN	
	D				4 5	6.0	<u> </u>	75	2	0	4	B	0							20	40	Ch.		140	1		N		40	
1	B 003-0			0 1.5	1.5 3	0.0	6.0 7.5	7.5 9.0	2 2	2 3	4 E 5	В	6 8	45	20	25	29	61	90	32 27	16 18	6b 7-6		140			N N		12 12	
	17			3	4.5		9.0	10.5		2	4		6	39	19	20	28	57			16	6b					N		12	
				4.5	6			12.0	1	3	4		6 6							21	16	6b					N		12	
2	B 004-0			1.5 3	3 4.5	4.5	6.0 7.5	7.5 9.0	4 2	3 2	7 / 4	A	11 6	31	17	14	32	44	76	21 23	14 14	6a 6a		80			N N		12 12	
	17			4.5	4.5			9.0 10.5		4	7		11	49	20	29	27	65	92	29	14						N		12	
				6	7.5		10.5	12.0	4	5	9		14 6			-				21	18	7-6								
3	B			0	1.5	-1.0	-1.0	0.5	1	2		B	5	40	20	22	07	00	07	27	14	6a	8	100			N		15	
	009-0 17			1.5 3	3 4.5		0.5 2.0	2.0 3.5	2 3	2 5	4 8		6 13	43 29	20 16	23 13	27 33	60 46	87 79	26 17	18 14	7-6 6a	14 9	120			Ν		12	
	.,			4.5	6			5.0	4	4	8		13 5		10	10	00	10	10	15	14	6a	8							
4											1	A																		
5						0.0					/	A																		
6						0.0					1	A																		
7						0.0					1	A																		
8						2.0					1	A													-					
							1																							
9						0.0						A				_		_								┨┣────				
3						0.0					,	•																		
10						0.0	<u> </u>					A													<u> </u>	┨┣────	<u> </u>			
10						0.0					/																			
4.1						0.0						•																		
11						0.0					/	A																		